scholarly journals Impact of predator fear on two competing prey species

2021 ◽  
Vol 2 (1) ◽  
pp. 1-12
Author(s):  
Debasis Mukherjee

Predator-prey interaction is a fundamental feature in the ecological system. The majority of studies have addressed how competition and predation affect species coexistence. Recent field studies on vertebrate has shown that fear of predators can influence the behavioural pattern of prey populations and reduce their reproduction. A natural question arises whether species coexistence is still possible or not when predator induce fear on competing species. Based on the above observation, we propose a mathematical model of two competing prey-one predator system with the cost of fear that affect not only the reproduction rate of both the prey population but also the predation rate of predator. To make the model more realistic, we incorporate intraspecific competition within the predator population. Biological justification of the model is shown through positivity and boundedness of solutions. Existence andstability of different boundary equilibria are discussed. Condition for the existence of coexistence equilibrium point is derived from showing uniform persistence. Local as well as a global stability criterion is developed. Bifurcation analysis is performed by choosing the fear effect as the bifurcation parameter of the model system. The nature of the limit cycle emerging through a Hopf bifurcation is indicated. Numerical experiments are carried out to test the theoretical results obtained from this model.

2019 ◽  
Vol 29 (14) ◽  
pp. 1950195 ◽  
Author(s):  
Ankit Kumar ◽  
Balram Dubey

Recently, some field experiments and studies show that predators affect prey not only by direct killing, they induce fear in prey which reduces the reproduction rate of prey species. Considering this fact, we propose a mathematical model to study the fear effect and prey refuge in prey–predator system with gestation time delay. It is assumed that prey population grows logistically in the absence of predators and the interaction between prey and predator is followed by Crowley–Martin type functional response. We obtained the equilibrium points and studied the local and global asymptotic behaviors of nondelayed system around them. It is observed from our analysis that the fear effect in the prey induces Hopf-bifurcation in the system. It is concluded that the refuge of prey population under a threshold level is lucrative for both the species. Further, we incorporate gestation delay of the predator population in the model. Local and global asymptotic stabilities for delayed model are carried out. The existence of stable limit cycle via Hopf-bifurcation with respect to delay parameter is established. Chaotic oscillations are also observed and confirmed by drawing the bifurcation diagram and evaluating maximum Lyapunov exponent for large values of delay parameter.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Hui Zhang ◽  
Zhihui Ma ◽  
Gongnan Xie ◽  
Lukun Jia

A predator-prey model incorporating individual behavior is presented, where the predator-prey interaction is described by a classical Lotka-Volterra model with self-limiting prey; predators can use the behavioral tactics of rock-paper-scissors to dispute a prey when they meet. The predator behavioral change is described by replicator equations, a game dynamic model at the fast time scale, whereas predator-prey interactions are assumed acting at a relatively slow time scale. Aggregation approach is applied to combine the two time scales into a single one. The analytical results show that predators have an equal probability to adopt three strategies at the stable state of the predator-prey interaction system. The diversification tactics taking by predator population benefits the survival of the predator population itself, more importantly, it also maintains the stability of the predator-prey system. Explicitly, immediate contest behavior of predators can promote density of the predator population and keep the preys at a lower density. However, a large cost of fighting will cause not only the density of predators to be lower but also preys to be higher, which may even lead to extinction of the predator populations.


2019 ◽  
Vol 29 (13) ◽  
pp. 1950185 ◽  
Author(s):  
Ting Qiao ◽  
Yongli Cai ◽  
Shengmao Fu ◽  
Weiming wang

In this paper, we investigate the influence of anti-predator behavior in prey due to the fear of predators with a Beddington–DeAngelis prey–predator model analytically and numerically. We give the existence and stability of equilibria of the model, and provide the existence of Hopf bifurcation. In addition, we investigate the influence of the fear effect on the population dynamics of the model and find that the fear effect can not only reduce the population density of both predator and prey, but also prevent the occurrence of limit cycle oscillation and increase the stability of the system.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ashok Mondal ◽  
Amit K. Pal

Abstract In this article, we discussed the dynamic behavior of a delay-induced harvested predator–prey model with fear effects (perceived by the prey). We then considered selective harvesting terms for both species which provide some fixed elapsed time to the prey and for the predator population before they are harvested. In other words, we are limiting the harvesting of species below a certain age so that they can grow to a certain specific size or age and thus protect juvenile populations. Reproduction of the prey population can also be greatly impeded due to the influence of the fear effect. The consideration of selective harvesting together with the effect of fear on the proposed system to show stable coexistence to the oscillatory mode and vice versa via Hopf-bifurcation. For better ecological management of the community, our study reveals the fact that collection delays and intensities should be maintained. Numerical simulations were performed to validate our analytical results.


2022 ◽  
Vol 7 (4) ◽  
pp. 5463-5479
Author(s):  
Ali Yousef ◽  
◽  
Ashraf Adnan Thirthar ◽  
Abdesslem Larmani Alaoui ◽  
Prabir Panja ◽  
...  

<abstract><p>This paper investigates a fractional-order mathematical model of predator-prey interaction in the ecology considering the fear of the prey, which is generated in addition by competition of two prey species, to the predator that is in cooperation with its species to hunt the preys. At first, we show that the system has non-negative solutions. The existence and uniqueness of the established fractional-order differential equation system were proven using the Lipschitz Criteria. In applying the theory of Routh-Hurwitz Criteria, we determine the stability of the equilibria based on specific conditions. The discretization of the fractional-order system provides us information to show that the system undergoes Neimark-Sacker Bifurcation. In the end, a series of numerical simulations are conducted to verify the theoretical part of the study and authenticate the effect of fear and fractional order on our model's behavior.</p></abstract>


Author(s):  
Michael B. Bonsall ◽  
Michael P. Hassell

Predation is a widespread population process that has evolved many times within the metazoa. It can affect the distribution, abundance, and dynamics of species in ecosystems. For instance, the distribution of western tussock moth is known to be affected by a parasitic wasp (Maron and Harrison, 1997; Hastings et al., 1998), the abundance of different competitors can be shaped by the presence or absence of predators (e.g. Paine, 1966), and natural enemies (such as many parasitoids) can shape the dynamics of a number of ecological interactions (Hassell, 1978, 2000). The broad aim of this chapter is to explore the dynamical effects of predators (including the large groupings of insect parasitoids) and show how our understanding of predator–prey interactions scales from knowledge of the behaviour and local patch dynamics to the population and regional (metapopulation) levels. We draw on a number of approaches including behavioural studies, population dynamics, and time-series analysis, and use models to describe the data and dynamics of the interaction between predators and prey. Predator–prey interactions have an inherent tendency to fluctuate and show oscillatory behaviour. If predators are initially rare, then the size of the prey population can increase. As prey population size increases, the predator populations also begins to increase, which in turn has a detrimental effect on the prey population leading to a decline in prey numbers. As prey become scarce then the predator population size declines and the cycle starts again. These intuitive dynamics can be captured by one of the simplest mathematical descriptions of a predator–prey interaction: the Lotka–Volterra model (Lotka, 1925; Volterra, 1926). Specifically, the Lotka–Volterra model for an interaction between a predator (P) and its prey (N) is a continuous-time model and has the form : where r is the prey-population growth rate in the absence of predators, α is the predator attack rate, c is the (positive) impact of prey on predators, and d is the death rate of predators in the absence of their prey resource.


2016 ◽  
Vol 26 (09) ◽  
pp. 1650147 ◽  
Author(s):  
Krishna Pada Das ◽  
Nandadulal Bairagi ◽  
Prabir Sen

It is generally, but not always, accepted that alternative food plays a stabilizing role in predator–prey interaction. Parasites, on the other hand, have the ability to change both the qualitative and quantitative dynamics of its host population. In recent times, researchers are showing growing interest in formulating models that integrate both the ecological and epidemiological aspects. The present paper deals with the effect of alternative food on a predator–prey system with disease in the predator population. We show that the system, in the absence of alternative food, exhibits different dynamics viz. stable coexistence, limit cycle oscillations, period-doubling bifurcation and chaos when infection rate is gradually increased. However, when predator consumes alternative food coupled with its focal prey, the system returns to regular oscillatory state from chaotic state through period-halving bifurcations. Our study shows that alternative food may have larger impact on the community structure and may increase population persistence.


Author(s):  
Debasis Mukherjee

Recent ecological studies on predator-prey interactions has concentrated on determining the impacts of antipredator behavior due to fear of predators. These studies are mainly confined into one predator-one prey system. But in case of multiple predator attack on single prey species, fear mechanism is still unknown. The combined impact of multiple predator often cannot be anticipated from their independent effects. So coexistence of multiple predators and prey’s fitness becomes an important issue from an ecological point of view. Based on the above observations, we proposed and analyzed a model consisting of two competing predator sharing a common prey where prey’s reproduction rate is affected due to fear generated by the predators. We first study the boundedness, uniform persistence, stability and Hopf bifurcation of the deterministic model. Thereafter, we have investigated the existence and uniqueness of the global positive solution, boundedness, asymptotic stability of the stochastic model.  Numerical examples are provided to support our obtained  results.


Sign in / Sign up

Export Citation Format

Share Document