Role of Alternative Food in Controlling Chaotic Dynamics in a Predator–Prey Model with Disease in the Predator

2016 ◽  
Vol 26 (09) ◽  
pp. 1650147 ◽  
Author(s):  
Krishna Pada Das ◽  
Nandadulal Bairagi ◽  
Prabir Sen

It is generally, but not always, accepted that alternative food plays a stabilizing role in predator–prey interaction. Parasites, on the other hand, have the ability to change both the qualitative and quantitative dynamics of its host population. In recent times, researchers are showing growing interest in formulating models that integrate both the ecological and epidemiological aspects. The present paper deals with the effect of alternative food on a predator–prey system with disease in the predator population. We show that the system, in the absence of alternative food, exhibits different dynamics viz. stable coexistence, limit cycle oscillations, period-doubling bifurcation and chaos when infection rate is gradually increased. However, when predator consumes alternative food coupled with its focal prey, the system returns to regular oscillatory state from chaotic state through period-halving bifurcations. Our study shows that alternative food may have larger impact on the community structure and may increase population persistence.

2013 ◽  
Vol 06 (02) ◽  
pp. 1350005 ◽  
Author(s):  
KRISHNA PADA DAS ◽  
SANJAY CHAUDHURI

Predator–prey model with harvesting is well studied. The role of disease in such system has a great importance and cannot be ignored. In this study we have considered a predator–prey model with disease circulating in the predator population only and we have also considered harvesting in the prey and in the susceptible predator. We have studied the local stability, Hopf bifurcation of the model system around the equilibria. We have derived the ecological and the disease basic reproduction numbers and we have observed its importance in the community structure of the model system and in controlling disease propagation in the predator population. We have paid attention to chaotic dynamics for increasing the force of infection in the predator. Chaotic population dynamics can exhibit irregular fluctuations and violent oscillations with extremely small or large population abundances. In this study main objective is to show the role of harvesting in controlling chaotic dynamics. It is observed that reasonable harvesting on the prey and the susceptible predator prevents chaotic dynamics.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhihua Chen ◽  
Qamar Din ◽  
Muhammad Rafaqat ◽  
Umer Saeed ◽  
Muhammad Bilal Ajaz

Selective harvesting plays an important role on the dynamics of predator-prey interaction. On the other hand, the effect of predator self-limitation contributes remarkably to the stabilization of exploitative interactions. Keeping in view the selective harvesting and predator self-limitation, a discrete-time predator-prey model is discussed. Existence of fixed points and their local dynamics is explored for the proposed discrete-time model. Explicit principles of Neimark–Sacker bifurcation and period-doubling bifurcation are used for discussion related to bifurcation analysis in the discrete-time predator-prey system. The control of chaotic behavior is discussed with the help of methods related to state feedback control and parameter perturbation. At the end, some numerical examples are presented for verification and illustration of theoretical findings.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Hui Zhang ◽  
Zhihui Ma ◽  
Gongnan Xie ◽  
Lukun Jia

A predator-prey model incorporating individual behavior is presented, where the predator-prey interaction is described by a classical Lotka-Volterra model with self-limiting prey; predators can use the behavioral tactics of rock-paper-scissors to dispute a prey when they meet. The predator behavioral change is described by replicator equations, a game dynamic model at the fast time scale, whereas predator-prey interactions are assumed acting at a relatively slow time scale. Aggregation approach is applied to combine the two time scales into a single one. The analytical results show that predators have an equal probability to adopt three strategies at the stable state of the predator-prey interaction system. The diversification tactics taking by predator population benefits the survival of the predator population itself, more importantly, it also maintains the stability of the predator-prey system. Explicitly, immediate contest behavior of predators can promote density of the predator population and keep the preys at a lower density. However, a large cost of fighting will cause not only the density of predators to be lower but also preys to be higher, which may even lead to extinction of the predator populations.


2021 ◽  
Vol 31 (10) ◽  
pp. 2150150
Author(s):  
N. C. Pati ◽  
Shilpa Garai ◽  
Mainul Hossain ◽  
G. C. Layek ◽  
Nikhil Pal

In ecology, the predator’s impact goes beyond just killing the prey. In the present work, we explore the role of fear in the dynamics of a discrete-time predator-prey model where the predator-prey interaction obeys Holling type-II functional response. Owing to the increasing strength of fear, the system becomes stable from chaotic oscillations via inverse Neimark–Sacker bifurcation. Extensive numerical simulations are carried out to investigate the intricate dynamics for the organization of periodic structures in the bi-parameter space of the system. We observe fear induced multistability between different pairs of coexisting heterogeneous attractors due to the overlapping of multiple periodic domains in the bi-parameter space. The basin sets of the coexisting attractors are obtained and discussed at length. Multistability in the predator-prey system is important because the dynamics of the predator and prey populations in the critical parameter zone becomes uncertain.


2021 ◽  
Vol 31 (03) ◽  
pp. 2150046
Author(s):  
Absos Ali Shaikh ◽  
Harekrishna Das ◽  
Nijamuddin Ali

The objective of this study is to investigate the complex dynamics of an eco-epidemic predator–prey system where disease is transmitted in prey species and predator population is being provided with alternative food. Holling type-II functional response is taken into consideration for interaction of predator and prey species. The half saturation constant for infected prey, the growth rate of susceptible prey and force of infection play a significant role to create complex dynamics in this predator–prey system where alternative food is present. It is seen that healthy disease-free system is possible here. The system shows some important dynamics viz. stable coexistence, Hopf bifurcation, period-doubling bifurcation and chaos. The analytical results obtained from the model are justified numerically.


2008 ◽  
Vol 16 (03) ◽  
pp. 425-444 ◽  
Author(s):  
MAINUL HAQUE ◽  
EZIO VENTURINO

The Leslie–Gower predator–prey model with logistic growth in prey is here modified to include an SI parasitic infection affecting the prey population only. Thresholds are identified for the predator population to survive, and the conditions for the disease to die out naturally are given. The behavior of the system around each equilibrium is investigated, showing that the disease incidence may have a relevant influence on the dynamics of complex ecosytems, assuming at times the role of a biological control parameter.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Changtong Li ◽  
Sanyi Tang ◽  
Robert A. Cheke

Abstract An expectation for optimal integrated pest management is that the instantaneous numbers of natural enemies released should depend on the densities of both pest and natural enemy in the field. For this, a generalised predator–prey model with nonlinear impulsive control tactics is proposed and its dynamics is investigated. The threshold conditions for the global stability of the pest-free periodic solution are obtained based on the Floquet theorem and analytic methods. Also, the sufficient conditions for permanence are given. Additionally, the problem of finding a nontrivial periodic solution is confirmed by showing the existence of a nontrivial fixed point of the model’s stroboscopic map determined by a time snapshot equal to the common impulsive period. In order to address the effects of nonlinear pulse control on the dynamics and success of pest control, a predator–prey model incorporating the Holling type II functional response function as an example is investigated. Finally, numerical simulations show that the proposed model has very complex dynamical behaviour, including period-doubling bifurcation, chaotic solutions, chaos crisis, period-halving bifurcations and periodic windows. Moreover, there exists an interesting phenomenon whereby period-doubling bifurcation and period-halving bifurcation always coexist when nonlinear impulsive controls are adopted, which makes the dynamical behaviour of the model more complicated, resulting in difficulties when designing successful pest control strategies.


2020 ◽  
Vol 18 (1) ◽  
pp. 458-475
Author(s):  
Na Zhang ◽  
Yonggui Kao ◽  
Fengde Chen ◽  
Binfeng Xie ◽  
Shiyu Li

Abstract A predator-prey model interaction under fluctuating water level with non-selective harvesting is proposed and studied in this paper. Sufficient conditions for the permanence of two populations and the extinction of predator population are provided. The non-negative equilibrium points are given, and their stability is studied by using the Jacobian matrix. By constructing a suitable Lyapunov function, sufficient conditions that ensure the global stability of the positive equilibrium are obtained. The bionomic equilibrium and the optimal harvesting policy are also presented. Numerical simulations are carried out to show the feasibility of the main results.


2019 ◽  
Vol 10 (02) ◽  
pp. 1850009
Author(s):  
OPhir Nave ◽  
Yifat Baron ◽  
Manju Sharma

In this paper, we applied the well-known homotopy analysis methods (HAM), which is a semi-analytical method, perturbation method, to study a reaction–diffusion–advection model for the dynamics of populations under biological control. According to the predator–prey model, the advection expression represents the predator density movement in which the acceleration is proportional to the prey density gradient. The prey population reproduces logistically, and the interactions of prey population obey the Holling’s prey-dependent Type II functional response. The predation process splits into the following subdivided processes: random movement which is represented by diffusion, direct movement which is described by prey taxis, local prey interactions, and consumptions which are represented by the trophic function. In order to ensure a successful biological control, one should make the predator-pest population to stabilize at a very low level of pest density. One reason for this effect is the intermediate taxis activity. However, when the system loses stability, for example very intensive prey taxis destroys the stability, it leads to chaotic dynamics with pronounced outbreaks of pest density.


Sign in / Sign up

Export Citation Format

Share Document