scholarly journals Structural Effects of Heat Treatment Holding-Time on Dynamic and Damping Behaviour of an Fe-28Mn-6Si-5Cr Shape Memory Alloy

Author(s):  
Mihai POPA ◽  
Bogdan PRICOP ◽  
Bogdan ISTRATE ◽  
Florin POPA ◽  
Viorel GOANȚĂ ◽  
...  

The paper reports the structural effects of holding time period, during heat treatment, on the dynamic and damping behavior of a Fe-28Mn-6Si-5Cr (mass. %) shape memory alloy. After casting and hot rolling, solution treatment at 1050 oC was applied for five holding times, 2, 4, 6, 8 and 10 hours, followed by water quenching. The specimens were analyzed by scanning electron microscopy and X-ray diffraction which emphasized that only the 2-hours solution treated specimens contained ε-hexagonal close packed (hcp) martensite and experienced the highest internal friction value. These specimens were tested on a special device which transformed both tension and compression into tensile strain applied to the specimens and proved to be a promising solution for anti-seismic damper.

2018 ◽  
Vol 233 ◽  
pp. 195-198 ◽  
Author(s):  
V.V. Poklonov ◽  
Y.I. Chumlyakov ◽  
I.V. Kireeva ◽  
V.A. Kirillov

2020 ◽  
Vol 405 ◽  
pp. 100-106
Author(s):  
Ivana Ivanić ◽  
Mirko Gojić ◽  
Stjepan Kožuh ◽  
Borut Kosec

The paper presents comparison of microstructure and fracture surface morphology of the CuAlNi shape memory alloy (SMA) after different heat treatment procedures. The investigation was performed on samples in as-cast state and heat treated states (solution annealing at temperatures of 850 °C / 60’ / H2O and 920 °C / 60’ / H2O along with tempering at two different temperature 150 °C / 60’ / H2O and 300 °C / 60’ / H2O). The microstructure of the samples was examined by optical (OM) and scanning electron microscope (SEM) equipped with device for EDS analysis. The obtained fracture surfaces were examined by SEM. Optical and scanning electron microscopy showed martensitic microstructure in all investigated samples. However, the fractographic analysis of samples after tensile testing reveals significant changes in fracture mechanism. In both solution annealed states the results shows transgranular type of fracture, but after tempering at two different temperatures the difference is obvious. After tempering at 150 °C, along with transgranular type of fracture appear some areas with intergranular type of fracture. After tempering at 300 °C, fracture surface reveals completely intergranular type of fracture.


Sign in / Sign up

Export Citation Format

Share Document