scholarly journals PERANCANGAN DAN REALISASI DUAL-BAND BAND-STOP FILTER DENGAN METODE SPURLINE DAN STEPPED-IMPEDANCE RESONATOR PADA FREKUENSI 2.45 GHZ DAN 5.8 GHZ

Author(s):  
Ananda Dana Pratama ◽  
Elisma Elisma

PERANCANGAN DAN REALISASI DUAL-BAND BAND-STOP FILTER DENGAN METODE SPURLINE DAN STEPPED-IMPEDANCE RESONATOR PADA FREKUENSI 2.45 GHZ DAN 5.8 GHZ

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 219
Author(s):  
Tae-Hyeon Lee ◽  
Ki-Cheol Yoon ◽  
Kwang Gi Kim

A stepped impedance resonator (SIR) is suitable for designing a dual-band bandpass filter (BPF) that can be adjusted to reject spurious bands. A BPF is proposed using an SIR T-shaped meander line and folded structure. The BPF mainly comprises a meander line, a folded structure, and a T-shaped line. A novel BPF is used for the T-shaped line, which operates as a band-stop filter connecting to the center of the BPF. As a result, the complete BPF enables dual-band operation. The insertion and return losses of the first frequency passband (f01) are 0.024 and 17.3 dB, respectively, with a bandwidth of 46% at a center frequency of 2.801 GHz (2.2–3.48 GHz). The insertion and return losses of the second frequency passband (f02) are 0.026 and 17.2 dB, respectively, with a bandwidth of 10% at a center frequency of 4.351 GHz (4.13–4.55 GHz). The proposed BPF provides low loss, a simple structure, and a small size of only 4.29 × 4.08 mm, and it can be integrated into mobile communications systems.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1951
Author(s):  
Kicheol Yoon ◽  
Kwanggi Kim

Portable wireless communication systems are increasingly in demand in small sizes for human convenience. In wireless communication systems, the performance, size, and unit cost are very important. A band−pass filter is important to sharp cut–off frequency characteristics, size, and frequency selectivity in wireless communication systems. The band−pass filter has three types of techniques in the transmission−zero method, stub−loaded resonator, and stepped impedance resonator for the sharp cut−off frequency characteristic, adjustable bandwidth, and excellent frequency response characteristics. To obtain these characteristics, the impedance ratio and length of a stub are mainly adjusted. It also utilizes a multi–mode technique to increase bandwidth. However, it is analyzed that the problem of reducing the size of the device still remains. To solve these problems, the paper is applied to a stub−loaded resonator and a stepped impedance resonator to control the impedance ratio and the length of the stub to obtain the results of the transmission−zero method, bandwidth control, and size reduction through the folded structure. Dual−band bandwidth was secured by integrating a T−shaped band−stop filter. The designed band–pass filter has center frequencies of 243 GHz and 7.49 GHz, and the insertion loss of a proposed band−pass filter is 0.102 dB and 0.103 dB. Additionally, the return loss of a proposed band−pass filter is 19.13 dB and 19.96 dB, respectively. The bandwidth of a filter is 120% and 105%, respectively. The size of the filter is 0.0708 λg × 0.0533 λg. The designed filter has a good skirt phenomenon, small size, low insertion loss, and dual−band characteristics.


Frequenz ◽  
2014 ◽  
Vol 69 (1-2) ◽  
pp. 65-70
Author(s):  
Jianzhong Chen ◽  
Xuefeng Li ◽  
Hongyu Shi ◽  
Anxue Zhang

Abstract A new design approach for a stepped impedance resonator (SIR) dual-band bandpass filter (BPF) with high multi-spurious suppression is proposed in this paper. The external coupling property of an SIR at multi-order resonant frequencies is fully studied. Different input impedances at desired frequencies are achieved by optimizing the unequal impedance transformer. The new solution shows the freedom in the choice of tapping point. The external quality values of multi-order harmonics vary with the shift of the tapping position. Wide upper stop-band rejection is realized by mismatching Qe at the unwanted harmonic frequencies, while keeping the Qe suitable for operating dual band to obtain good in-band performance. A traditional dual-band BPF and a novel practical BPF operated at 2.45/5.25 GHz are designed and fabricated to demonstrate the above idea. Good simulated and measured results are presented.


2011 ◽  
Vol 35 ◽  
pp. 111-131 ◽  
Author(s):  
Adam Reda Hasan Alhawari ◽  
Alyani Ismail ◽  
Mohd Adzir Mahdi ◽  
Raja Syamsul Azmir Raja Abdullah

Frequenz ◽  
2017 ◽  
Vol 71 (11-12) ◽  
Author(s):  
Jin Xu ◽  
Yan Zhu ◽  
Yong-Qian Du

AbstractThis paper presents a compact quad-band bandpass filter (QB-BPF) using double-diplexing structure, which consists of two channel filters and a pair of modified manifold-coupled lines. Each channel filter is realized by the asymmetrical coupling shorted stub loaded stepped-impedance resonator (SSLSIR) dual-band bandpass filter (DB-BPF), and the modified manifold line constructed by lumped elements is proposed to connect two channel filters to constitute the QB-BPF. The fabricated QB-BPF occupies a compact circuit size of 0.178λ


2013 ◽  
Vol 655-657 ◽  
pp. 1614-1618
Author(s):  
Wen Ko ◽  
Man Long Her ◽  
Yu Lin Wang ◽  
Ming Wei Hsu

This paper studies a very simple structure for dual-band bandpass filter. Filter is composed of two asymmetric coupled resonator circuit by two sets of different size stepped impedance resonator. This circuit applied microstrip line, coupling principle and impedance ratio by controlling the stepped impedance resonator to control the center frequency 2.6/5.2 GHz of the first and the second bandpass filter. The basic structure of the filter is constituted by the three sections of transmission line and two sets of SIR, that is, in two gaps of the three sections of transmission line parallel connection the equivalent inductances and capacitor of the two sets of SIR in series with the resonant circuit (LCL) to constitute bandpass filter. The low frequency 2.6 GHz is through the upper half of low impedance SIR, and the high frequency 5.2 GHz is through the lower half of high impedance SIR. This paper presents the design of asymmetric SIR-based dual-band bandpass filter, the filter structure is simple, easy to produce and can control the characteristics of the passband center frequency. By electromagnet simulation software( IE3D ) to simulate, the actual production of the circuit using a vector analyzer measurement, simulation and measurement results show good consistency.


Sign in / Sign up

Export Citation Format

Share Document