scholarly journals Desarrollo del algoritmo genético heurístico para la coordinación de protecciones

Author(s):  
Meng Yen Shih ◽  
Francisco Román Lezama-Zárraga ◽  
Jorge de Jesus Chan-Gonzalez ◽  
José Gadiel Che-Puch

The coordination of overcurrent relays is an easy task when dealing with a radial distribution line. However, when directional units are in place to protect meshed networks, the problem becomes very complex. This is because the protection device must offer primary and backup operation for the same or multiple lines using the same protection setting. Moreover, considering two parameters namely the time dial setting and the current pickup setting make the coordination problem even more complex to be achieved manually. Therefore, in this article, the protection coordination study is formulated as an optimization problem to be solved using a heuristic Genetic Algorithm. This not only saves time for the protection engineer; it also transfers the burden to a computer using artificial intelligence and guarantee that the results are close to optimal.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ming-Ta Yang ◽  
An Liu

In power systems, determining the values of time dial setting (TDS) and the plug setting (PS) for directional overcurrent relays (DOCRs) is an extremely constrained optimization problem that has been previously described and solved as a nonlinear programming problem. Optimization coordination problems of near-end faults and far-end faults occurring simultaneously in circuits with various topologies, including fixed and variable network topologies, are considered in this study. The aim of this study was to apply the Nelder-Mead (NM) simplex search method and particle swarm optimization (PSO) to solve this optimization problem. The proposed NM-PSO method has the advantage of NM algorithm, with a quicker movement toward optimal solution, as well as the advantage of PSO algorithm in the ability to obtain globally optimal solution. Neither a conventional PSO nor the proposed NM-PSO method is capable of dealing with constrained optimization problems. Therefore, we use the gradient-based repair method embedded in a conventional PSO and the proposed NM-PSO. This study used an IEEE 8-bus test system as a case study to compare the convergence performance of the proposed NM-PSO method and a conventional PSO approach. The results demonstrate that a robust and optimal solution can be obtained efficiently by implementing the proposal.


Author(s):  
Yang Li ◽  
Xianliang Shi ◽  
Hongdong Diao ◽  
Min Zhang ◽  
Yadong Wu

This paper analyzes the artificial intelligence algorithms related to the storage path optimization problem and focuses on the ant colony algorithm and genetic algorithm with better applicability. The genetic algorithm is used to optimize the parameters of the ant colony algorithm, and the performance of the ant colony algorithm is improved. A typical route optimization problem model is taken as an example to prove the effectiveness of parameter optimization. This paper proposes a combined forecasting method through data preprocessing algorithm and artificial intelligence optimization. The combined prediction method first uses wavelet transform threshold processing to remove the noise data in the original data and then uses three separate methods to reduce noise. Forecast warehouse data and obtain intermediate forecast results. This article analyzes warehouse management and can solve the problems in the company’s warehouse management from the aspects of warehouse design and planning, warehouse design, and integrated warehouse management. After comparative analysis and selection, this paper uses the SLP method to rationally adjust and arrange the relative position and area of each functional area of the warehouse, and improve the evaluation index system. Experimental research shows that under the guidance of this article to optimize storage strategy, cargo location layout, and warehousing workflow, the employee reward mechanism mobilizes the enthusiasm of employees, improves work efficiency, and reduces storage costs. The above-mentioned various optimization and storage improvement measures finally reduced the total storage cost by 17%, effectively achieving the goal of cost control.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiziana Ciano ◽  
Massimiliano Ferrara ◽  
Meisam Babanezhad ◽  
Afrasyab Khan ◽  
Azam Marjani

AbstractThe heat transfer improvements by simultaneous usage of the nanofluids and metallic porous foams are still an attractive research area. The Computational fluid dynamics (CFD) methods are widely used for thermal and hydrodynamic investigations of the nanofluids flow inside the porous media. Almost all studies dedicated to the accurate prediction of the CFD approach. However, there are not sufficient investigations on the CFD approach optimization. The mesh increment in the CFD approach is one of the challenging concepts especially in turbulent flows and complex geometries. This study, for the first time, introduces a type of artificial intelligence algorithm (AIA) as a supplementary tool for helping the CFD. According to the idea of this study, the CFD simulation is done for a case with low mesh density. The artificial intelligence algorithm uses learns the CFD driven data. After the intelligence achievement, the AIA could predict the fluid parameters for the infinite number of nodes or dense mesh without any limitations. So, there is no need to solve the CFD models for further nodes. This study is specifically focused on the genetic algorithm-based fuzzy inference system (GAFIS) to predict the velocity profile of the water-based copper nanofluid turbulent flow in a porous tube. The most intelligent GAFIS could perform the most accurate prediction of the velocity. Hence, the intelligence of GAFIS is tested for different values of cluster influence range (CIR), squash factor(SF), accept ratio (AR) and reject ratio (RR), the population size (PS), and the percentage of crossover (PC). The maximum coefficient of determination (~ 0.97) was related to the PS of 30, the AR of 0.6, the PC of 0.4, CIR of 0.15, the SF 1.15, and the RR of 0.05. The GAFIS prediction of the fluid velocity was in great agreement with the CFD. In the most intelligent condition, the velocity profile predicted by GAFIS was similar to the CFD. The nodes increment from 537 to 7671 was made by the GAFIS. The new predictions of the GAFIS covered all CFD results.


2020 ◽  
Vol 12 (23) ◽  
pp. 9818
Author(s):  
Gabriel Fedorko ◽  
Vieroslav Molnár ◽  
Nikoleta Mikušová

This paper examines the use of computer simulation methods to streamline the process of picking materials within warehouse logistics. The article describes the use of a genetic algorithm to optimize the storage of materials in shelving positions, in accordance with the method of High-Runner Strategy. The goal is to minimize the time needed for picking. The presented procedure enables the creation of a software tool in the form of an optimization model that can be used for the needs of the optimization of warehouse logistics processes within various types of production processes. There is a defined optimization problem in the form of a resistance function, which is of general validity. The optimization is represented using the example of 400 types of material items in 34 categories, stored in six rack rows. Using a simulation model, a comparison of a normal and an optimized state is realized, while a time saving of 48 min 36 s is achieved. The mentioned saving was achieved within one working day. However, the application of an approach based on the use of optimization using a genetic algorithm is not limited by the number of material items or the number of categories and shelves. The acquired knowledge demonstrates the application possibilities of the genetic algorithm method, even for the lowest levels of enterprise logistics, where the application of this approach is not yet a matter of course but, rather, a rarity.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Jing Xiao ◽  
Jing-Jing Li ◽  
Xi-Xi Hong ◽  
Min-Mei Huang ◽  
Xiao-Min Hu ◽  
...  

As it is becoming extremely competitive in software industry, large software companies have to select their project portfolio to gain maximum return with limited resources under many constraints. Project portfolio optimization using multiobjective evolutionary algorithms is promising because they can provide solutions on the Pareto-optimal front that are difficult to be obtained by manual approaches. In this paper, we propose an improved MOEA/D (multiobjective evolutionary algorithm based on decomposition) based on reference distance (MOEA/D_RD) to solve the software project portfolio optimization problems with optimizing 2, 3, and 4 objectives. MOEA/D_RD replaces solutions based on reference distance during evolution process. Experimental comparison and analysis are performed among MOEA/D_RD and several state-of-the-art multiobjective evolutionary algorithms, that is, MOEA/D, nondominated sorting genetic algorithm II (NSGA2), and nondominated sorting genetic algorithm III (NSGA3). The results show that MOEA/D_RD and NSGA2 can solve the software project portfolio optimization problem more effectively. For 4-objective optimization problem, MOEA/D_RD is the most efficient algorithm compared with MOEA/D, NSGA2, and NSGA3 in terms of coverage, distribution, and stability of solutions.


2009 ◽  
Vol 26 (04) ◽  
pp. 479-502 ◽  
Author(s):  
BIN LIU ◽  
TEQI DUAN ◽  
YONGMING LI

In this paper, a novel genetic algorithm — dynamic ring-like agent genetic algorithm (RAGA) is proposed for solving global numerical optimization problem. The RAGA combines the ring-like agent structure and dynamic neighboring genetic operators together to get better optimization capability. An agent in ring-like agent structure represents a candidate solution to the optimization problem. Any agent interacts with neighboring agents to evolve. With dynamic neighboring genetic operators, they compete and cooperate with their neighbors, and they can also use knowledge to increase energies. Global numerical optimization problems are the most important ones to verify the performance of evolutionary algorithm, especially of genetic algorithm and are mostly of interest to the corresponding researchers. In the corresponding experiments, several complex benchmark functions were used for optimization, several popular GAs were used for comparison. In order to better compare two agents GAs (MAGA: multi-agent genetic algorithm and RAGA), the several dimensional experiments (from low dimension to high dimension) were done. These experimental results show that RAGA not only is suitable for optimization problems, but also has more precise and more stable optimization results.


Author(s):  
Xiaomin Chen ◽  
Ramesh Agarwal

In this paper, we consider the Wind Farm layout optimization problem using a genetic algorithm. Both the Horizontal–Axis Wind Turbines (HAWT) and Vertical-Axis Wind Turbines (VAWT) are considered. The goal of the optimization problem is to optimally place the turbines within the wind farm such that the wake effects are minimized and the power production is maximized. The reasonably accurate modeling of the turbine wake is critical in determination of the optimal layout of the turbines and the power generated. For HAWT, two wake models are considered; both are found to give similar answers. For VAWT, a very simple wake model is employed.


Sign in / Sign up

Export Citation Format

Share Document