scholarly journals ANALISIS PERUBAHAN KEKERASAN YANG TERJADI PADA CINCIN TORAK AKIBAT PERUBAHAN JARAK TEMPUH PADA MOTOR YAMAHA MIO SOUL GT

2021 ◽  
pp. 32-37

In a four stroke combustion engine, there are three piston rings, namely two compression piston rings and one lubrication control piston ring. The piston compression ring serves to maintain the combustion pressure, while the piston ring lubrication regulator functions to lubricate the combustion chamber during the energy change process so that the piston will run back and forth in the combustion chamber smoothly. Damage that occurs to the piston ring can be in the form of a broken piston ring, or a scratched or worn piston ring. These things can reduce the quality of the energy transfer process. The piston ring is broken because the ring is too brittle. Vibration that occurs in the piston when combustion occurs at full load increases the possibility of a fracture process in the piston ring. The brittleness of the piston ring is strongly influenced by the material used. To overcome this, a hard but not stiff material is needed. Keywords: Hardness, mileage, Vicker test

Author(s):  
Sylvester Abanteriba

The compression and oil rings of the piston engine play a very important role in the performance and reliability of the piston engine. The rings are required to accomplish three main distinct tasks: 1. Sealing the combustion chamber gas from the crankcase to eliminate blow-by phenomenon, which constitutes the flow of some of the contents of the combustion chamber into the crankcase. 2. Proper distribution of the lubricating oil film over the piston skirt and cylinder liner. 3. Transfer of heat from piston to cylinder liner. Unfortunately the piston ring pack contributes to the highest proportion of the frictional losses in the engine and is more prone to high wear rates. In the engine, the compression rings are designed to provide effective sealing of the crankcase against the gases from the combustion chamber. The oil-rings provide an effective means of distributing the lubricating oil over the cylinder liner while keeping it from flowing into the combustion chamber. The ability of the compression rings to serve as a gas seal depends on their axial position within the groove. The ring needs to be in contact with the lower flank in order to provide the requisite sealing effect. Once the ring lifts itself from the lower flank its ability to act as an effective seal is compromised. The axial motion of the piston rings during the operation of the engine engenders blow-by and therefore has deteriorating effect on the engine performance. Not much work has, hereto, been done to study the impact of altitude on the movement of the piston rings and hence the blow-by phenomenon. This papers presents a simulation model to investigate this effect.


2017 ◽  
Vol 169 (2) ◽  
pp. 14-17
Author(s):  
Joanna BORKOWSKA ◽  
Andrzej KAŹMIERCZAK

Piston – ring – cylinder assembly of combustion engine has a lot of friction pairs examples, also one of them which decide about fastness to wear, it means first sealing ring – cylinder, called further very simply ring – cylinder unit. During work of this unit we can observe wear of piston, precisely – of coating which is deposited on ring to prolong service life. Objective of this work was to realize a test of roll-block type on tribotester to set durability of piston sample. Within the framework of this test were investigated a prototyped piston’s rings with diamond embankment. Piston rings are made of diamond coating technology with a porous chromium coating, where in pores is deposited on said diamond powder with a grain size about 1 micron. The work will be carried out of an analysis of collaboration piston – rings – cylinder unit in internal combustion engine and an analysis of the use of hard materials in friction pairs, including powders. The work aims to show the possibilities and benefits of the application of new protective coatings to reduce their wearing, which is consistent with the observed trend of technology development.


Author(s):  
C. D. Strang ◽  
J. T. Burwell

Piston rings with radio-active wearing-surfaces were used to study the micro-welding between rings and cylinder wall during “run-in” in a small, water-cooled, internal combustion engine. The results indicated that micro-welding and the accompanying transfer of metal were present under the mildest conditions of engine operation, including motoring with the engine cylinder-head removed. The distribution of micro-welding along the ring-travel was found to correspond to the wear profile observed in engine cylinders by other workers. Such transferred material may play a part in the formation of the “glazed” layer which is said to be present on “run-in” cylinder walls and rings. The presence of transferred metal at all points along the ring-travel indicates that the piston ring was not fully supported by a hydrodynamic oil film of sufficient thickness to separate completely the surfaces of the ring and the cylinder wall.


2015 ◽  
Vol 21 (4) ◽  
pp. 66-78 ◽  
Author(s):  
Grzegorz Koszałka ◽  
Mirosław Guzik

Abstract This paper presents a mathematical model of piston-rings-cylinder sealing (TPC) of a combustion engine. The developed model is an itegrated model of gas flow through gaps in TPC unit, displacements and twisting motions of piston rings in ring grooves as well as generation of oil film between ring face surfaces and cylinder liner. Thermal deformations and wear of TPC unit elements as well as heat exchange between flowing gas and surrounding walls, were taken into account in the model. The paper contains descriptions of: assumptions used for developing the model, the model itself, its numerical solution as well as its computer application for carrying out simulation tests.


2009 ◽  
Vol 137 (2) ◽  
pp. 128-141
Author(s):  
Andrzej WOLFF

In the paper a model of a piston ring pack motion on an oil film has been analysed. The local oil film thickness can be compared to height of the combined roughness of mating surfaces of piston rings and cylinder liner. Equations describing the mixed lubrication problem based on the empirical mathematical model formulated in works of Patir, Cheng [6, 7] and Greenwood, Tripp [3] have been combined [12] and used in this paper. A model of a gas flow through the labyrinth seal of piston rings has been developed [13, 15]. In addition models of ring twist effects and axial ring motion in piston grooves have been applied [14, 15]. In contrast to the previous papers of the author, an experimental verification of the main parts of developed mathematical model and software has been presented. A relatively good compatibility between the experimental measurements and calculated results has been achieved. In addition this study presents the simulation results for an automobile internal combustion engine


2016 ◽  
Vol 68 (2) ◽  
pp. 158-169 ◽  
Author(s):  
Yali Zhang ◽  
Xiaogang Zhang ◽  
Tonghai Wu ◽  
You-bai Xie

Purpose – The piston ring-cylinder liner pair is one of the most important tribological systems of an internal combustion engine. The friction loss of the piston ring-cylinder liner pair accounts for the largest portion of total efficiency losses. Therefore, improving the tribological system design of the piston ring-cylinder liner pair can reduce friction losses and bring tremendous economic benefits to society. This paper aims use surface texturing, which is proving to be an effective method, for improving the tribological performance of sliding surfaces. Design/methodology/approach – In this paper, an experimental study using a pin-on-disk tribometer was carried out to evaluate the effects of surface texturing on friction reduction of piston rings under various loads and sliding velocities. Rectangular- and circular-shaped textures with different depths and area densities were produced by a Femtosecond laser. Comparison experiments were conducted with un-textured rings. Findings – The results indicate that the friction performance of the ring surface was significantly improved by surface texturing, and the running-in stage was also shortened. More specifically, it was found that the rectangular-shaped texture had a better effect on friction reduction than the circular-shaped texture. Results also indicate that an optimum texture density existed for the rectangular-shaped texture. Additionally, it was observed that the average friction coefficient reduction of the textured ring decreased with increasing load and increased with increasing sliding velocity. Originality/value – Consequently, these findings provide a more in-depth understanding of the relationship between micro-textures and tribological properties of piston rings in lubricating sliding.


1981 ◽  
Vol 23 (6) ◽  
pp. 295-304 ◽  
Author(s):  
B. L. Ruddy ◽  
D. Dowson ◽  
P. N. Economou

The established orifice and volume method for predicting the gas pressures between piston rings in reciprocating machines is extended to take account of the energy loss due to wall friction in the circumferential gas flow between the piston and cylinder liner. The results show that such energy losses are significant when gas flow rates exceed 10-2 kg/s and that this is most likely to occur in engines of over 0·5 m bore with worn piston rings. Under these conditions the angular displacement of the ring gaps significantly affects ring pack gas flow. In particular, it is shown that the maximum resistance to the flow of gas through the ring pack occurs when adjacent ring gaps are separated by more than 90 degrees. In the analysis of piston ring lubrication in ring packs it is necessary to ascertain the inter-ring pressures and the present paper enables such pressures to be determined with greater accuracy and for a wider range of engines.


Sign in / Sign up

Export Citation Format

Share Document