Research on Cylinder Bore, Piston and Piston Ring Lubrication of the Internal Combustion Engine (3rd Report) : Mechanism of Blow-By Part 3

1948 ◽  
Vol 51 (360) ◽  
pp. 363-364
Author(s):  
Takeo YOKOBORI
2019 ◽  
Vol 71 (4) ◽  
pp. 515-524 ◽  
Author(s):  
Venkateswara Babu P. ◽  
Ismail Syed ◽  
Satish Ben Beera

Purpose In an internal combustion engine, piston ring-cylinder liner tribo pair is one among the most critical rubbing pairs. Most of the energy produced by an internal combustion engine is dissipated as frictional losses of which major portion is contributed by the piston ring-cylinder liner tribo pair. Hence, proper design of tribological parameters of piston ring-cylinder liner pair is essential and can effectively reduce the friction and wear, thereby improving the tribological performance of the engine. This paper aims to use surface texturing, an effective and feasible method, to improve the tribological performance of piston ring-cylinder liner tribo pair. Design/methodology/approach In this paper, influence of positive texturing (protruding) on friction reduction and wear resistance of piston ring surfaces was studied. The square-shaped positive textures were fabricated on piston ring surface by chemical etching method, and the experiments were conducted with textured piston ring surfaces against un-textured cylinder liner surface on pin-on-disc apparatus by continuous supply of lubricant at the inlet of contact zone. The parameters varied in this study are area density and normal load at a constant sliding speed. A comparison was made between the tribological properties of textured and un-textured piston ring surfaces. Findings From the experimental results, the tribological performance of the textured piston ring-cylinder liner tribo pair was significantly improved over a un-textured tribo pair. A maximum friction reduction of 67.6 per cent and wear resistance of 81.6 per cent were observed with textured ring surfaces as compared to un-textured ring surfaces. Originality/value This experimental study is helpful for better understanding of the potency of positive texturing on friction reduction and wear resistance of piston ring-cylinder liner tribo pair under lubricated sliding conditions.


Author(s):  
Boon-Keat Chui ◽  
Harold J. Schock ◽  
Andrew M. Fedewa ◽  
Dan E. Richardson ◽  
Terry Shaw

The cylinder-kit assembly of an internal combustion engine experiences severe conditions during engine operation. The top compression ring, in particular, undergoes extreme stress directly from cylinder gas pressure, inertial and thermal loads. The top compression ring is often the most significantly affected piston ring, and one of the common resultant phenomena is high wear on the ring/bore surfaces. In many previous studies, the modeling of tribological phenomena at the top compression ring/bore region involves hydrodynamic and boundary lubrication, friction and wear. This present work accounts for an additional factor that may affect the piston ring/bore lubrication — the lubricant evaporative effect. A three-dimensional oil evaporative analysis is coupled into the calculation of mixed lubrication in a cyclic engine computation. The presence of the evaporation analysis allows the study of the temperature influence on the piston ring/bore lubrication in addition to its effect on oil viscosity. A prospective application of this model is in diesel engine analysis. Considering the broad operating range of modern diesel fuel injection systems, the injection timing can be made throughout the compression/expansion process. It is well demonstrated that certain areas of fuel injection operation can result in potential adverse consequences such as increased bore wear. A well known example is “bore wall fuel wetting.” Given concerns around the potential for wear-inducing interactions between the fuel injection plumes and the bore wall, we have explored a particular interaction: bore wear in response to an imposed local heating of the bore wall. The simulation result provides valuable insights on this interaction, in which higher bore wear is predicted around bore wall area with locally imposed wall heating.


Sign in / Sign up

Export Citation Format

Share Document