scholarly journals BIDIRECTIONAL CONTROLLED MULTIPLE SYNCHRONIZATION OF UNBALANCED ROTORS AND ITS EXPERIMENTAL EVALUATION

2021 ◽  
pp. 63-74
Author(s):  
Boris Andrievsky ◽  
Vladimir I. Boikov

In the paper the problem of multiple controlled synchronization of a pair of unbalanced rotors is considered. A new bidirectional control law is proposed for multiple synchronization of rotors. A linear analysis of the dynamics of a simplified system model is presented, demonstrating the control system robustness with respect to the parameters of the vibration machine and controller. The main part of the paper is devoted to the description of the experimental results obtained at the Multiresonance Mechatronic Laboratory Setup, demonstrating the efficiency of the proposed approach and revealing its application scope.

2014 ◽  
Vol 971-973 ◽  
pp. 714-717 ◽  
Author(s):  
Xiang Shi ◽  
Zhe Xu ◽  
Qing Yi He ◽  
Ka Tian

To control wheeled inverted pendulum is a good way to test all kinds of theories of control. The control law is designed, and it based on the collaborative simulation of MATLAB and ADAMS is used to control wheeled inverted pendulum. Then, with own design of hardware and software of control system, sliding mode control is used to wheeled inverted pendulum, and the experimental results of it indicate short adjusting time, the small overshoot and high performance.


2014 ◽  
Vol 548-549 ◽  
pp. 819-823
Author(s):  
Xi Juan Wang ◽  
Tao Zhou ◽  
Jing Xiao Feng ◽  
Yu Peng Pei

In the AC control system, vector control theory is very popular as it makes the AC motor achieve the performance as perfect as DC motor [1]. In the paper, the vector control theory is briefly introduced, and then a vector control system model is builded in the matlab/simulink, and the SVPWM technique is adopted. The results show that the improved vector control sytem of PMSM has a excellent performance.


Author(s):  
Kazuhiko Hiramoto ◽  
Taichi Matsuoka ◽  
Katsuaki Sunakoda

A scheduling strategy of multiple semi-active control laws for various earthquake disturbances is proposed to maximize the control performance. Generally, the semi-active controller for a given structural system is designed as a single control law and the single control law is used for all the forthcoming earthquake disturbances. It means that the general semi-active control should be designed to achieve a certain degree of the control performance for all the assumed disturbances with various time and/or frequency characteristics. Such requirement on the performance robustness becomes a constraint to obtain the optimal control performance. We propose a scheduling strategy of multiple semi-active control laws. Each semi-active control law is designed to achieve the optimal performance for a single earthquake disturbance. Such optimal control laws are scheduled with the available data in the control system. As the scheduling mechanism of the multiple control laws, a command signal generator (CSG) is defined in the control system. An artificial neural network (ANN) is adopted as the CSG. The ANN-based CSG works as an interpolator of the multiple control laws. Design parameters in the CSG are optimized with the genetic algorithm (GA). Simulation study shows the effectiveness of the approach.


2009 ◽  
Vol 22 (2) ◽  
pp. 183-195
Author(s):  
Ján Vittek ◽  
Vladimir Vavrús ◽  
Jozef Buday ◽  
Jozef Kuchta

The paper presents design and verification of Forced Dynamics Control of an actuator with linear permanent magnet synchronous motor. This control method is a relatively new one and offers an accurate realization of a dynamic speed response, which can be selected for given application by the user. In addition to this, the angle between stator current vector and moving part flux vector is maintained mutually perpendicular as it is under conventional vector control. To achieve prescribed speed response derived control law requires estimation of an external force, which is obtained from the set of observers. The first observer works in pseudo-sliding mode and observes speed of moving part while the second one has filtering effect for elimination of the previous one chattering. The overall control system is verified by simulations and experimentally. Preliminary experiments confirmed that the moving part speed response follows the prescribed one fairly closely.


2021 ◽  
Author(s):  
Puren Ouyang ◽  
Yuqi Hu ◽  
Wenhui Yue ◽  
Deshun Liu

Reduction of contour error is a very important issue for high precise contour tracking applications, and many control systems were proposed to deal with contour tracking problems for two/three axial translational motion systems. However, there is no research on cross-coupled contour tracking control for serial multi-DOF robot manipulators. In this paper, the contouring control of multi-DOF serial manipulators is developed for the first time and a new cross-coupled PD (CC-PD) control law is proposed, based on contour errors of the end-effector and tracking errors of the joints. It is a combination of PD control for trajectory tracking at joint level and PD control for contour tracking at the end-effector level. The contour error of the end-effector is transformed to the equivalent tracking errors of the joints using the Jacobian regulation, and the CC-PD control law is implemented in the joint level. Stability analysis of the proposed CC-PD control system is conducted using the Lyapunov method, followed by some simulation studies for linear and nonlinear contour tracking to verify the effectiveness of the proposed CC-PD control system.


Sign in / Sign up

Export Citation Format

Share Document