scholarly journals Blending effect of rotor spun yarn with different blending methods

2019 ◽  
Vol 70 (05) ◽  
pp. 403-407
Author(s):  
RUI HUA YANG ◽  
QIAN QIAN DENG ◽  
CHUN PING XIE ◽  
WEI DONG GAO

Color blended rotor spun yarn mixing with different methods were spun. Three blending methods were used, one passage of drawing, three passages of drawing and rovings during multi-channel spinning. Multi-channel spinning is modified on rotor spinning machine, which is implemented by a novel mechanical system specially designed to incorporate three separate feed rollers side by side and controlled by servo motors with PLC. Using this new method, blend ratio of yarn can be controlled and realized by asynchronous drafted rovings. 37 type of color blend yarn were produced with different blending ratios. And each yarn was intercepted with 5 cross sections and a total of 185 cross-sectional images were taken. Hamilton index of different colored fibers were calculated of the each type of yarns. And sum of absolute values of Hamilton index were got to demonstrated fibers blending effect in yarns cross sections. All the Hamilton index of the yarns prepared by the three above mentioned methods were all around 5, much below 20. The results showed that regardless of blending method used, the blending effects of rotor spun yarns were all very good.

2017 ◽  
Vol 89 (3) ◽  
pp. 411-421 ◽  
Author(s):  
Rui-Hua Yang ◽  
Yuan Xue ◽  
Wei-Dong Gao

This paper introduces a new and flexible spinning method that is modified on a rotor spinning machine. The modification is implemented by a novel mechanical system specially designed to incorporate three separate feed rollers side by side and controlled by servo motors with programmable logic controller (PLC). Using this new method, yarn structure parameters including linear density and blend ratio can be controlled and realized by asynchronous drafted slivers. Sixty-six types of color blended yarns were produced by controlling blending percentages of three basic colored slivers (magenta, yellow, and cyan) by changing the feeding speeds of the slivers respectively with constant yarn linear density and color. Surface morphologies, blending effects, and performances of the yarns were tested and analyzed. In addition, fancy yarns including slub yarn, period melange yarn, gradient melange yarn, and color pointed melange yarn were produced and their longitudinal morphologies were taken. The results demonstrated spinning feasibility and product variety of the three channeled rotor spun process.


1988 ◽  
Vol 58 (11) ◽  
pp. 625-632 ◽  
Author(s):  
B. Neckář ◽  
S. M. Ishtiaque ◽  
L. Švehlová

A mathematical model is suggested for studying the radial packing density of yarn, and the proposed model is used for a comparative study of ring and rotor spun yarns. The results show that rotor spun yarn consists of a smaller number of fibers in the cross section compared to ring spun yarn, which explains the lower strength of rotor yarn. Although the radial packing density of both yarns is non-uniform, that of rotor yarn is nearer the yarn axis and less towards the yarn surface compared to ring spun yarn.


1988 ◽  
Vol 58 (5) ◽  
pp. 291-298 ◽  
Author(s):  
Izabella Krucińnska

An analysis of fiber blending irregularities is presented in relation to the disturbances of blend yarn properties resulting from these phenomena. Fiber blending irregularities were assessed using the original method of yarn surface analysis and a new method of yarn cross-sectional division. These methods correctly reflect the disturbances in the mechanical and aesthetic yarn properties resulting from non-uniform mixing of constituent fibers.


2017 ◽  
Vol 17 (1) ◽  
pp. 6-11 ◽  
Author(s):  
Hanen Ghanmi ◽  
Adel Ghith ◽  
Tarek Benameur

AbstractThis article provides three models to predict rotor spun yarn characteristics which are breaking strength, breaking elongation and unevenness. These models used noncorrelated raw material characteristics and some processing parameters. For this purpose, five different cotton blends were processed into rotor spun yarns having different metric numbers (Nm10, Nm15, Nm18, Nm22, Nm30 and Nm37). Each count was spun at different twist levels. Response surface method was used to estimate yarn quality characteristics and to study variable effects on these characteristics. In this study, predicting models are given by the analysis of response surface after many iterations in which nonsignificant terms are excluded for more accuracy and precision. It was shown that yarn count, twist and sliver properties had considerable effects on the open-end rotor spun yarn properties. This study can help industrial application since it allows a quality management-prediction based on input variables such as fibre characteristics and process parameters.


2017 ◽  
Vol 25 (0) ◽  
pp. 48-52 ◽  
Author(s):  
Thilak Vadicherla ◽  
Dhandapani Saravanan

This study investigates the effect of the blend ratio on recycled blended yarn quality characteristics. Ring-spun yarns of linear density of 23.6, 29.5 and 39.4 tex were produced from five blend proportions of recycled polyester and cotton (0:100, 33:67, 50:50, 67:33 and 100:0). Increasing the recycled polyester content increases the tenacity, elongation at break and hairiness and decreases unevenness, thin places, thick places and neps, while a decrease in linear density increases the tenacity, elongation at break, unevenness, thin places, thick places, neps and hairiness. Statistical analysis reflects that both the blend ratio and linear density have a significant difference on the tenacity, elongation at break, thin places, thick places, neps and hairiness. However, with reference to unevenness, a significant difference is reported only for linear density and not for the blend ratio. The ratio of recycled polyester has a significant influence on the overall quality of recycled polyester/cotton blended yarn. The blending of recycled polyester and cotton can be optimised to meet various end-use requirements.


1992 ◽  
Vol 62 (2) ◽  
pp. 67-73 ◽  
Author(s):  
A. P. S. Sawhney ◽  
G. F. Ruppenicker ◽  
L. B. Kimmel ◽  
K. Q. Robert

In recent years, we have been reporting our research on composite yarns of mostly cotton content produced on a modified ring spinning system. Recently, we reported an improved method of producing an all staple-core spun yarn, and we have applied the same method to filament-core spinning, obtaining a yarn of greatly improved quality. The new filament-core yarn has almost total core coverage, does not strip, and is about 10% stronger (probably due to its improved yarn structure) than a conventional filament-core yarn. This paper briefly describes the new and conventional core spinning methods and evaluates nylon filament-core/cotton-wrap yarns produced with them. There is also a comparison of the cover factor, strip resistance, and microscopic cross sections of a few other core yarns (with Kevlar, fiberglass, and polyester cores). A significant improvement in the cover factor of the new yarn suggests that it may be very useful for sewing threads; ropes; twines; cables; special military, industrial, and surgical fabrics; and other textiles in which the high strength, durability, and a 100% cotton surface (for ease of finishing or coating) are important.


2018 ◽  
Vol 26 (1(127)) ◽  
pp. 30-35
Author(s):  
Iwona Frydrych ◽  
Xuzhong Su ◽  
Xiaoxuan Qin ◽  
Xiaoxuan Qin ◽  
Xiaoxuan Qin ◽  
...  

Cellulosic fibre is a kind of renewable fibre that has attracted more and more attention in textile processing recently. Yarn spinning is the first fundamental process in textile processing. Therefore, in this paper, taking viscose fibre and tencel fibre as examples, the qualities of cellulosic yarn were studied. Three kinds of pure viscose and tencel yarn: 14.6 tex (40S), 9.7 tex (60S) and 7.3 tex (80S), were spun on a ring spinning system modified with lattice apron compact spinning (LACS) and complete condensing spinning (CCS), respectively. The spun yarn qualities, yarn evenness, breaking strength and hairiness, were tested and comparatively analysed. Then two kinds of cellulosic blend yarn including 14.6 tex, 9.7 tex and 7.3 tex JC/R 60/40 yarn, and 14.6 tex, 9.7 tex and 7.3 tex JC/T 70/30 yarns were spun on a ring spinning system modified with CCS. The spun yarn evenness, breaking strength and hairiness were tested, and the cross sections of the spun yarns were presented using a Y172 Hardy’s thin cross-section sampling device. The results show that for both the pure viscose and tencel yarn, compared with LACS, CCS has better yarn evenness, a little lower yarn breaking strength and a little more hairiness, while the uniformity of yarn qualities are all improved. For the cellulosic blend yarn, compared with the pure cellulosic yarn, yarn evenness is worse, especially for the cotton and tencel blend yarn.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Babak Yadollah Roudbari ◽  
Safdar Eskandarnejad

Use of nylon/cotton blend yarn in military uniform is common and due to advantages in its fabric in comparison to 100% cotton fabrics, capabilities of military uniforms have been improved. In this study the effects of navel type on properties of (50%-50%) nylon/cotton blend yarn and wrapper formation were investigated and compared with similar ring spun yarn. Rotor spun yarn was produced on a single head laboratory rotor spinning machine with four navels (smooth, spiral, 3 grooved, and 4 grooved) and ring yarn was produced on a zinser 319 ring spinning machine. Test result showed that navel type has a significant effect on yarn strength and strength of smooth navel yarn was maximum. Elongation of a 100% cotton rotor spun yarn is more than similar ring yarn, but it was not observed in cotton/nylon blend. Yarn irregularity and imperfections varied significantly with navel type and for rotor yarns were more than the ring yarn. Navel type had significant effect on yarn hairiness but it didnot have an effect on yarn abrasion significantly.


Author(s):  
T.B. Ball ◽  
W.M. Hess

It has been demonstrated that cross sections of bundles of hair can be effectively studied using image analysis. These studies can help to elucidate morphological differences of hair from one region of the body to another. The purpose of the present investigation was to use image analysis to determine whether morphological differences could be demonstrated between male and female human Caucasian terminal scalp hair.Hair samples were taken from the back of the head from 18 caucasoid males and 13 caucasoid females (Figs. 1-2). Bundles of 50 hairs were processed for cross-sectional examination and then analyzed using Prism Image Analysis software on a Macintosh llci computer. Twenty morphological parameters of size and shape were evaluated for each hair cross-section. The size parameters evaluated were area, convex area, perimeter, convex perimeter, length, breadth, fiber length, width, equivalent diameter, and inscribed radius. The shape parameters considered were formfactor, roundness, convexity, solidity, compactness, aspect ratio, elongation, curl, and fractal dimension.


Sign in / Sign up

Export Citation Format

Share Document