scholarly journals Effect of Some Navels on Properties of Cotton/Nylon66 Blend (1 : 1) Rotor Spun Yarn and Wrapper Formation: A Comparison between Rotor and Ring Spun Yarn

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Babak Yadollah Roudbari ◽  
Safdar Eskandarnejad

Use of nylon/cotton blend yarn in military uniform is common and due to advantages in its fabric in comparison to 100% cotton fabrics, capabilities of military uniforms have been improved. In this study the effects of navel type on properties of (50%-50%) nylon/cotton blend yarn and wrapper formation were investigated and compared with similar ring spun yarn. Rotor spun yarn was produced on a single head laboratory rotor spinning machine with four navels (smooth, spiral, 3 grooved, and 4 grooved) and ring yarn was produced on a zinser 319 ring spinning machine. Test result showed that navel type has a significant effect on yarn strength and strength of smooth navel yarn was maximum. Elongation of a 100% cotton rotor spun yarn is more than similar ring yarn, but it was not observed in cotton/nylon blend. Yarn irregularity and imperfections varied significantly with navel type and for rotor yarns were more than the ring yarn. Navel type had significant effect on yarn hairiness but it didnot have an effect on yarn abrasion significantly.


Fibers ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 59
Author(s):  
Dunja Šajn Gorjanc ◽  
Neža Sukič

The aim of this research was to determine the optimum twist equation for ring-spun yarns. The yarn twist can be calculated by different equations. With the research, we tried to find the appropriate equation to determine the yarn twist, which is determined by the values of yarn strength and hairiness. In the research, yarns from long staple combed cotton rovings and of different fineness (10 tex, 11.8 tex, 20 tex and 29.4 tex) were analyzed. The yarn twist was calculated using the equations of Koechlin and Laetsch. The analyzed yarns were produced in the spinning mill on the laboratory ring spinning machine Spinntester. In the second part of the investigation, yarn strength and hairiness were analyzed as a function of yarn twist. The results showed that Laetsch’s equation is suitable for determining the twist for yarns with a fineness of 10 tex, 11.8 tex, 20 tex and 29.4 tex, since, in this case, the calculated number of yarn threads is higher and thus the strength and elongation at break are also higher. The yarn hairiness is higher in analyzed samples for yarns with the twist calculated according to the Koechlin’s equation.



2014 ◽  
Vol 1028 ◽  
pp. 20-24
Author(s):  
Rui Fang Cui ◽  
Xiang Hong Li

Ring-spun cotton yarn and rotor-spun yarn with hard twist factor were manufactured. It shows that yarn breaking strength varies slightly with twist factor, either ring-spun yarn or rotor-spun yarn. Twist factor has little effect on yarn breaking elongation. Yarn number has effect on yarn hairiness for ring-spun yarn and rotor-spun yarn. Coarser yarn has more hairiness than fine yarn. Ring-spun yarn hairiness is higher than rotor-spun yarn. Twist factor has some effect on coarse yarn uniformity while it affects fine yarn uniformity slightly. Ring-spun yarn has higher strength than rotor-spun yarn. Rotor-spun yarn has less elongation and less hairiness than ring-spun yarn and its uniformity is better.



1997 ◽  
Vol 67 (4) ◽  
pp. 253-258 ◽  
Author(s):  
Xungai Wang ◽  
Menghe Miao ◽  
Yanlai How

This paper introduces the concept of JetRing spinning, a new spinning technique that incorporates features of both ring and air-jet spinning systems. In JetRing spinning, a single air jet is used below the yarn-forming zone of a conventional ring spinning system; this jet acts in a way similar to the first jet in air-jet spinning. The swirling air currents in the jet wind the protruding fibers around the yarn body, thus reducing yarn hairiness. The air pressure applied to the jet in this study is 0.5 bar, which is much lower than the air pressure used in air-jet spinning. To evaluate the performance of JetRing spinning, ring spun and JetRing spun worsted yarns of 56 tex are tested for hairiness, tensile properties, and yarn evenness. The hairiness results from the Zweigle hairiness meter show that the JetRing spun yarn has much lower numbers of hairs than the ring spun yarn in almost all the hair length groups. The total number of hairs exceeding 3 mm ( i.e., the S3 value) for the JetRing spun yarn is nearly 40% less than that of the ring spun yarn, while both yarn types show little difference in evenness and tensile properties.



2021 ◽  
Vol 16 ◽  
pp. 155892502110065
Author(s):  
Peng Cui ◽  
Yuan Xue ◽  
Yuexing Liu ◽  
Xianqiang Sun

Yarn-dyed textiles complement digital printing textiles, which hold promise for high production and environmentally friendly energy efficiencies. However, the complicated structures of color-blended yarns lead to unpredictable colors in textile products and become a roadblock to developing nonpollution textile products. In the present work, we propose a framework of intelligent manufacturing of color blended yarn by combining the color prediction algorithm with a self-developed computer numerically controlled (CNC) ring spinning system. The S-N model is used for the prediction of the color blending effect of the ring-spun yarn. The optimized blending ratios of ring-spun yarn are obtained based on the proposed linear model of parameter W. Subsequently, the CNC ring-spinning frame is used to manufacture color-blended yarns, which can configure the constituent fibers in such a way that different sections of yarn exhibit different colors.



2016 ◽  
Vol 11 (3) ◽  
pp. 155892501601100 ◽  
Author(s):  
Esin Sarioğlu ◽  
Osman Babaarslan

In the textile industry, composite yarns with multifilament cores are used to impart strength. There are various spinning systems to produce composite core-spun yarns. In this study, to determine the effects of filament fineness on yarn characteristics of composite yarns, polyester filaments with medium, fine and micro fiber linear densities were used as the core portion and cotton fiber was used as the sheath material. Yarn samples were manufactured using a modified ring spinning system with four different yarn counts and constant twist factor (ae). The effect of filament linear density on yarn tensile properties, unevenness and imperfections was determined. Yarn evenness and tensile properties were compared with 100% cotton ring spun yarn and to each other. When relative amount of core increases, it was observed that composite yarns had improved tenacity and elongation compared to 100% cotton ring spun yarn. Although filament fineness was found to have a significant effect on the CVm % properties, there was no statistical effect on imperfections other than yarn count parameter.



2019 ◽  
Vol 89 (21-22) ◽  
pp. 4438-4451 ◽  
Author(s):  
Peiying Li ◽  
Mingrui Guo ◽  
Fengxin Sun ◽  
Weidong Gao

An agent-aided system (AAS) for improving comprehensive properties of ring spun yarns with the aid of viscosity and surface tension of the agent is reported in this paper. The mechanism of the humidification and friction process of the AAS was investigated, and related experiments were also carried out to verify the mechanism of analysis. The results confirm that the AAS can attach the fiber ends protruding out of a yarn body on the yarn surface and assist in twisting the fiber ends back into the interior of the yarn body, resulting in a significant reduction of the modified ring spun yarn hairiness. Moreover, the yarn hairiness is prominently reduced after the winding process. The experimental results also show that a speed ratio of 1.3 between the rotating speed of the cylinder and the output speed of the yarn leads to the greatest extent of harmful hairiness reduction (34%), which also corresponds to optimal modified yarn tenacity. Meanwhile, the modified ring spun yarns show a tight and smooth appearance, and the yarn evenness has no deterioration. In addition, the AAS is applicable to both cotton and viscose yarns with different yarn counts. Therefore, the AAS can potentially be used to reduce yarn hairiness for ring spun yarns and enhance the quality of ring spun yarns in the textile industry.





2018 ◽  
Vol 13 (2) ◽  
pp. 155892501801300 ◽  
Author(s):  
Furqan Khurshid ◽  
Sarmad Aslam ◽  
Usman Ali ◽  
Amir Abbas ◽  
Talha Ali Hamdani ◽  
...  

The aim of the present work is to optimize the drafting parameters for ring spinning by using full factorial (23) experimental design. Three drafting parameters of ring spinning each at two levels were chosen for this study. These technological parameters were break draft, size of pin spacer and hardness of rubber cots. It was found from statistical analysis that pin spacer size has a significant effect on yarn unevenness (U %), imperfection index (IPI), hairiness (H) and yarn strength (CLSP) compared to the other two chosen factors. These yarn quality parameters were improved by increasing the spacer size. The increase in spacer size reduces the cohesive forces among the fibers during drafting. The pin between the cradle and the top front roller transfer the individual fibers from the drafted fiber assembly to the spinning triangle without any stretching or accumulation. This yields a more integrated structure and the quality of yarn is improved.



2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wardah Anam ◽  
Khurram Shehzad Akhtar ◽  
Faheem Ahmad ◽  
Abher Rasheed ◽  
Abher Rasheed ◽  
...  

Purpose The purpose of this study was to produce yarns from three different spinning techniques, i.e.Murata Vortex Spinning (MVS) ring spinning and rotor spinning. Those yarns were then used to produce fabrics. Then, the effect of silicone softener on tactile comfort of fabric was investigated. Design/methodology/approach Three different yarns, i.e. Ring, Rotor and MVS yarns, were used to make fabrics using CCI sample loom which were then subjected to post treatments like desizing, scouring and bleaching. After the completion of the dyeing process, silicone-based softener was used to improve the hand feel of fabrics. The structures of three yarns were evaluated using Scanning electron microscopy. The fabrics were evaluated against compression, bending and surface properties using Kawabata evaluation system. Findings The fabric made of MVS yarn depicted more geometrical roughness, coefficient of friction and bending rigidity but less compressibility as compared to fabrics made with other yarns. It was observed that softener concentration has a direct relationship with thickness and bending rigidity of the fabric, and inverse relationship with coefficient of friction and geometrical roughness of the fabric. Originality/value MVS yarn has some superior properties over rotor and ring spun yarn like high production rates, high resistance to pilling, clear appearance and stability against deformation but has disadvantage that it has less compressibility. Therefore, softener is applied on the fabric, to address this issue, so that it could also be used for apparels application.



Sign in / Sign up

Export Citation Format

Share Document