EKSTRAKSI FITUR PEMBULUH DARAH CITRA FUNDUS RETINA MENGGUNAKAN FUZZY LOGIC

2021 ◽  
Vol 26 (2) ◽  
pp. 163-175
Author(s):  
Asyaroh Ramadona Nilawati ◽  
Taufik Hidayat

Ekstraksi pola pembuluh darah retina dapat dimanfaatkan dalam sistem biometrik sebagai otentikasi keamanan. Citra hasil ekstraksi pola pembuluh darah retina dapat dimasukkan ke dalam fitur untuk identifikasi sistem biometrik. Salah satu metode yang dapat dilakukan untuk melakukan segmentasi pembuluh darah retina adalah metode fuzzy logic. Pada penelitian ini, dilakukan ekstraksi pembuluh darah citra fundus retina menggunakan implementasi fuzzy logic. Peneliti menggunakan sejumlah 20 citra fundus yang diperoleh dari dataset DRIVE berformat .tif. Proses segmentasi dimulai dengan tahap preprocessing yang berisikan konversi citra menjadi grayscale, median filtering, perataan histogram CLAHE, dan eliminasi optic disc, kemudian dilanjutkan dengan pembuatan fuzzy inference system. Tahapan preprocessing yang digunakan merupakan hasil dari rangkaian uji coba peneliti dengan melihat hasil dari setiap uji coba yang dilakukan, sehingga mendapatkan citra yang menonjolkan fitur pembuluh darah dan menghilangkan noise atau fitur retina yang tidak diperlukan seperti optic disc. Uji coba segmentasi dilakukan pada Polyspace R2020a sebagai media untuk menjalankan program mulai dari preprocessing hingga segmentasi menggunakan fuzzy logic. Keluaran dari segmentasi ini berupa citra segmentasi hasil dari metode fuzzy logic dan crisp value. Metode fuzzy logic berhasil diterapkan untuk melakukan ekstraksi pembuluh darah retina dan menghasilkan crisp value. Hasil penelitian ini diharapkan dapat digunakan sebagai salah satu fitur sistem identifikasi biometrik retina.

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Arati M. Dixit ◽  
Harpreet Singh

The real-time nondestructive testing (NDT) for crack detection and impact source identification (CDISI) has attracted the researchers from diverse areas. This is apparent from the current work in the literature. CDISI has usually been performed by visual assessment of waveforms generated by a standard data acquisition system. In this paper we suggest an automation of CDISI for metal armor plates using a soft computing approach by developing a fuzzy inference system to effectively deal with this problem. It is also advantageous to develop a chip that can contribute towards real time CDISI. The objective of this paper is to report on efforts to develop an automated CDISI procedure and to formulate a technique such that the proposed method can be easily implemented on a chip. The CDISI fuzzy inference system is developed using MATLAB’s fuzzy logic toolbox. A VLSI circuit for CDISI is developed on basis of fuzzy logic model using Verilog, a hardware description language (HDL). The Xilinx ISE WebPACK9.1i is used for design, synthesis, implementation, and verification. The CDISI field-programmable gate array (FPGA) implementation is done using Xilinx’s Spartan 3 FPGA. SynaptiCAD’s Verilog Simulators—VeriLogger PRO and ModelSim—are used as the software simulation and debug environment.


2019 ◽  
Vol 8 (4) ◽  
pp. 8961-8964

Software is a basic system that acts as a major key part in general functioning system like securing the need of performance and scope of the system. Here the security is given to unauthorized user as unauthorized client that casually gets the change or modification within the system by effecting the efficiency and functionality of the system. So in order to overcome this issue new improved software is taken that improves the system performance and security. the paper represents a new fuzzy logic based system for handling secured attribute and assessment in software. Based on this reason we propose PC1 and bugs dataset for fuzzy inference system can be used. This secured system model helps software engineers to select secured and safety software for the performance and ambiguity.


2021 ◽  
pp. 014459872110417
Author(s):  
Ya-Jun Fan ◽  
Hai-tong Xu ◽  
Zhao-Yu He

Wind energy has been developed and is widely used as a clean and renewable form of energy. Among the existing variety of wind turbines, variable-speed variable-pitch wind turbines have become popular owing to their variable output power capability. In this study, a hybrid control strategy is proposed to implement pitch angle control. A new nonlinear hybrid control approach based on the Adaptive Neuro-Fuzzy Inference System and fuzzy logic control is proposed to regulate the pitch angle and maintain the captured mechanical energy at the rated value. In the controller, the reference value of the pitch angle is predicted by the Adaptive Neuro-Fuzzy Inference System according to the wind speed and the blade tip speed ratio. A proposed fuzzy logic controller provides feedback based on the captured power to modify the pitch angle in real time. The effectiveness of the proposed hybrid pitch angle control method was verified on a 5 MW offshore wind turbine under two different wind conditions using MATLAB/Simulink. The simulation results showed that fluctuations in rotor speed were dramatically mitigated, and the captured mechanical power was always near the rated value as compared with the performance when using the Adaptive Neuro-Fuzzy Inference System alone. The variation rate of power was 0.18% when the proposed controller was employed, whereas it was 2.93% when only an Adaptive Neuro-Fuzzy Inference System was used.


This chapter presents the mathematical formulation of the fuzzy logic-based inference systems, used as means to infer about the response of ill-conditioned systems, based on the field knowledge representation in the fuzzy world. Particular approaches are explored, e.g., Fuzzy Inference System (FIS), Adaptive Networks-based FIS (ANFIS), Intuitionistic FIS (IFIS) and Fuzzy Cognitive Map (FCM), surfacing their potentialities in modeling applications, such as those in the field of learning, examined in the chapters of Part III that follow.


2021 ◽  
Vol 11 (19) ◽  
pp. 9083
Author(s):  
Yahya Lambat ◽  
Nick Ayres ◽  
Leandros Maglaras ◽  
Mohamed Amine Ferrag

It is a well known fact that the weakest link in a cyber secure system is the people who configure, manage or use it. Security breaches are persistently being attributed to human error. Social engineered based attacks are becoming more sophisticated to such an extent where they are becoming increasingly more difficult to detect. Companies implement strong security policies as well as provide specific training for employees to minimise phishing attacks, however these practices rely on the individual adhering to them. This paper explores fuzzy logic and in particular a Mamdani type fuzzy inference system to determine an employees susceptibility to phishing attacks. To negate and identify the susceptibility levels of employees to social engineering attacks a Fuzzy Inference System FIS was created through the use of fuzzy logic. The utilisation of fuzzy logic is a novel way in determining susceptibility due to its ability to resemble human reasoning in order to solve complex inputs, or its Interpretability and simplicity to be able to compute with words. This proposed fuzzy inference system is based on a number of criteria which focuses on attributes relating to the individual employee as well as a companies practices and procedures and through this an extensive rule base was designed. The proposed scoring mechanism is a first attempt towards a holistic solution. To accurately predict an employees susceptibility to phishing attacks will in any future system require a more robust and relatable set of human characteristics in relation to the employee and the employer.


Author(s):  
Alex Surapati ◽  
Azam Zyaputra ◽  
Reza Satria Rinaldi

AbstrakThe quality of cooking oil sold in the market needs to be checked to ensure its health. cooking oil quality detector is designed to make it easier for the public to know the quality of the cooking oil. The research method is to make tools and conduct testing. The test is carried out by measuring the viscosity and density using the tool made. When the viscosity of 985 fuzzification was "good", and the density was 542.93 Kg/mL of "good" fuzzification, the fuzzification was processed by a fuzzy inference system, then defuzzification occurred in the form of oil quality results. fried "good". When the viscosity of 932 fuzzification is "sufficient", and the density is 618.69 Kg/mL of "moderate" fuzzification, a fuzzy inference system occurs, a defuzzification process is "moderate", when the viscosity of 926 fuzzification is "bad", and a density of 631.31 Kg/mL fuzzification "bad", fuzzy inference system occurs, defuzzification process occurs with "bad" results. To ensure that the results are accurate, the sample is taken to the BPOM which measures free fatty acids. From the BPOM test results converted to viscosity and density. In order to obtain an accurate conversion value between viscosity and density, it is recommended that a large number of samples be tested..Keywords: viscosity, density, fuzzy logic


Sign in / Sign up

Export Citation Format

Share Document