scholarly journals Source and Health Risk Assessment of Heavy Metals in Non-Certified Organic Rice Farming at Nakhon Nayok Province, Thailand

2019 ◽  
pp. 96-106
Author(s):  
Porntiwa Satachon ◽  
Sasithorn Keawmoon ◽  
Patcharida Rengsungnoen ◽  
Sirikul Thummajitsakul ◽  
Kun Silprasit

Heavy metals contamination is a problem in some non-certified organic rice farms that do not have buffer zones. Soil monitoring is therefore required to estimate the potential risk of such organic products. The objectives of the present study are to determine the extent of heavy metal contamination, sources of contamination and assessment of non-carcinogenic health risks to local consumers. Concentrations of toxic heavy metals were determined in soil and rice grain to assess the bioaccumulation factor. The health risk assessment was analyzed following Target Hazard Quotients (THQ) and the Hazard Index (HI). Sources of heavy metal contamination were determined by a correlation study of heavy metal contents, THQ and HI with some physical properties of these non-certificated organic rice fields. The occurrence of heavy metals in agricultural soils and rice grain were ranked in the following order: Pb > Mn > Zn > Cu > Ni and Zn > Mn > Cu > Ni. However, Pb and Zn contamination exceeded maximum permissible levels in rice grain. Non-certified organic rice from these locations might therefore present a health risk for consumers; the high HI values of rice consumption for adult males (5.10-35.09) and 6.12-42.08) indicated a serious adverse health risk for consumers. Individual correlation analysis and principal component analysis indicated that the THQ of Zn was positively correlated with its content in soil and in the grain. Main roads and community activities were found to be the main source of contamination for Zn and Mn, while Pb and Cu contamination mainly derived from paddy field activities such as fertilizer application. This finding will contribute to raising public awareness of the health risks of non-certified organic rice farming.

Author(s):  
Nur Syahirah Zulkafflee ◽  
Nurul Adillah Mohd Redzuan ◽  
Sara Nematbakhsh ◽  
Jinap Selamat ◽  
Mohd Razi Ismail ◽  
...  

Paddy plants tend to accumulate heavy metals from both natural and anthropogenic sources, and this poses adverse risks to human health. The objective of this study was to investigate heavy metal contamination in paddy plants in Kelantan, Malaysia, and its health risk assessment. The bioaccumulation of heavy metals was studied by means of enrichment (EF) and translocation factors (TF). The health risk assessment was performed based on USEPA guidelines. The EF for heavy metals in the studied areas was in the descending order of Cu > As > Cr > Cd > Pb. Meanwhile, Cr and Pb exhibited higher TF values from stem to grain compared with the others. The combined hazard index (HI) resulting from five heavy metals exceeded the acceptable limit (HI >1). The lifetime cancer risk, in both adult and children, was beyond the acceptable limit (10−4) and mainly resulted from exposure. The total cancer risk (CRt) due to simultaneous exposures to multiple carcinogenic elements also exceeded 10−4. In conclusion, intake of heavy metal through rice ingestion is likely to cause both non-carcinogenic and carcinogenic health risks. Further research is required to investigate the extent of heavy metal contamination in agricultural soils and, moreover, to establish human exposure as a result of rice consumption.


Author(s):  
Agatha Anak Sibuar ◽  
Nur Syahirah Zulkafflee ◽  
Jinap Selamat ◽  
Mohd Razi Ismail ◽  
Soo Yee Lee ◽  
...  

Rice is one of the major crops as well as the staple food in Malaysia. However, historical mining activity has raised a concern regarding heavy metal contamination in paddy plants, especially in Perak, a state with major tin mining during the late nineteenth century. Therefore, the objective of this study is to investigate the heavy metals (As, Cd, Pb, Cu, Cr) contamination in paddy soils and paddy plants in three districts in Perak. The content of heavy metals was determined using ICP-MS, while the absorption and transferability of heavy metals in the paddy plants were investigated through enrichment (EF) and translocation (TF) factors. Principal component analysis (PCA) was employed to recognize the pattern of heavy metal contaminations in different sampling areas. Health risk assessment was performed through calculation of various indices. The quantification results showed that root contained highest concentration of the studied heavy metals, with As exhibiting the highest concentration. The EF results revealed the accumulation of As, Cu, and Cr in the rice grains while PCA showed the different compositional pattern in the different sampling areas. The health risk assessment disclosed both noncarcinogenic and carcinogenic risks in the local adults and children. Overall, findings from this study show that heavy metal contamination poses potential health risks to the residents and control measure is required.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Nur Syahirah Zulkafflee ◽  
Nurul Adillah Mohd Redzuan ◽  
Jinap Selamat ◽  
Mohd Razi Ismail ◽  
Sarva Mangala Praveena ◽  
...  

Heavy metals from natural and anthropogenic sources accumulate in soil and plants and as a consequence represent important environmental contamination problems. Nevertheless, food safety issues and adverse health risks make this one of the most serious environmental issues. The aim of the present study was to assess heavy metal contamination in the paddy plants from the northern area of Malaysia using Inductively Coupled Plasma Mass Spectrometry (ICPMS) and its risk assessment. In total, the heavy metals (As, Cd, Cu, Cr, and Pb) of the samples of paddy plants harvested from Kedah areas were extracted using an acid digestion method, while the heavy metals for soil samples using ammonium acetate. The heavy metal concentrations were then analysed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The enrichment (EF) and translocation factors (TF) of heavy metals were calculated, and health risk assessment (HRA) was performed. The EF values for heavy metals from the soil to roots, roots to stems, stems to leaves, and stems to grains followed the order Cu > As > Cr > Cd > Pb, whereas Cr and Pb were characterized by greater TF values from stem to grain than the other elements. The average daily dose (ADD) for both children and adults is below the safe value intake for each of the studied elements. The combined hazard index (HI) of five elements was beyond the acceptable value (HI >1). The carcinogenic risk, as exemplified by lifetime cancer risk (LCR), indicated that single exposure to As or Cr, in both adults and children, was greater than 10−4. The total cancer risk (CRt) resulting from multiple exposure to carcinogenic elements exceeded the acceptable value (CRt >1 ×10−4) in both adults and children. Overall, exposure to heavy metals through rice consumption poses potential non-carcinogenic and carcinogenic health risks to the local residents in the northern area; thus, regular monitoring of pollution in the area is crucial.


Author(s):  
Sangeetha Annam ◽  
Anshu Singla

Abstract: Soil is a major and important natural resource, which not only supports human life but also furnish commodities for ecological and economic growth. Ecological risk has posed a serious threat to the ecosystem by the degradation of soil. The high-stress level of heavy metals like chromium, copper, cadmium, etc. produce ecological risks which include: decrease in the fertility of the soil; reduction in crop yield & degradation of metabolism of living beings, and hence ecological health. The ecological risk associated, demands the assessment of heavy metal stress levels in soils. As the rate of stress level of heavy metals is exponentially increasing in recent times, it is apparent to assess or predict heavy metal contamination in soil. The assessment will help the concerned authorities to take corrective as well as preventive measures to enhance the ecological and hence economic growth. This study reviews the efficient assessment models to predict soil heavy metal contamination.


Chemosphere ◽  
2021 ◽  
Vol 274 ◽  
pp. 129792
Author(s):  
Yony Román-Ochoa ◽  
Grethel Teresa Choque Delgado ◽  
Teresa R. Tejada ◽  
Harry R. Yucra ◽  
Antonio E. Durand ◽  
...  

2020 ◽  
Vol 79 (6) ◽  
Author(s):  
Soledad Sánchez-Mateos ◽  
Lander Vinicio Pérez ◽  
Manolo Alexander Córdova Suárez ◽  
David Alejandro Cabrera-Riofrio

Author(s):  
Made Rahayu Kusumadewi ◽  
I Wayan Budiarsa Suyasa ◽  
I Ketut Berata

Tukad Badung River is one of the potential contamination of heavy metal sare very highin the city of Denpasar. Tilapia (Oreochromis mossambicus) isa commonspecies of fish found in the river and became the object of fishing by the public. The fish is usually consume das a food ingredient forever yangler. Fish can be used as bio-indicators of chemical contamination in the aquatic environment. Determination of heavy metal bioconcentration and analysis of liver histopathology gills organs and muscles is performed to determine the content of heavy metals Pb, Cd, and Cr+6, and the influence of heavy metal exposure to changes in organ histopathology Tilapia that live in Tukad Badung. In this observational study examined the levels of heavy metal contamination include Pb, Cd and Cr+6 in Tilapia meat with AAS method (Atomic Absorption Spectrofotometric), and observe the histopathological changes in organ preparations gills, liver, and muscle were stained with HE staining (hematoxylin eosin). Low Pb content of the fish that live in Tukad Badung 0.8385 mg/kg and high of 20.2600 mg/kg. The content of heavy metals Pb is above the quality standards specified in ISO 7378 : 2009 in the amount of 0.3 mg / kg. The content of Cr+6 low of 1.1402 mg / kg and the highest Cr+6 is 6.2214 mg / kg. The content of Cr+6 is above the quality standards established in the FAO Fish Circular 764 is equal to 1.0 mg / kg. In fish with Pb bioconcentration of 0.8385 mg / kg and Cr+6 of 1.1402 mg / kg was found that histopathological changes gill hyperplasia and fusion, the liver was found degeneration, necrosis, and fibrosis, and in muscle atrophy found. Histopathologicalchangessuch asedema and necrosis ofthe liveris foundin fishwith Pb bioconcentration of 4.5225mg/kg and Cr+6 amounted to2.5163mg/kg. Bio concentration of heavy metal contamination of lead (Pb) and hexavalent chromium (Cr+6) on Tilapia ( Oreochromis mossambicus ) who lives in Tukad Badung river waters exceed the applicable standard. Histopathological changes occur in organs gills, liver, and muscle as a result of exposure to heavy metals lead and hexavalent chromium. Advised the people not to eat Tilapia that live in Tukad Badung


Sign in / Sign up

Export Citation Format

Share Document