scholarly journals ANALYSIS OF GEOMETRIC FEATURES OF THE 316L STEEL SURFACE AFTER DIFFERENT SURFACE TREATMENT METHODS

2016 ◽  
Vol 2 (1) ◽  
pp. 73-79
Author(s):  
Mariusz Kłonica

The paper presents the selected results of surface quality. The selected 2D and 3D surface roughness parameters are analyzed. An intensive development of various surface topography measuring techniques allows the prediction of the functional attributes of the surface and also evaluation of its quality. The measurement strategy highly influences the results of the evaluation of surface roughness. Finally, some general conclusions are given.

2017 ◽  
Vol 261 ◽  
pp. 285-292 ◽  
Author(s):  
Gyula Varga ◽  
János Kundrák

The experimental and theoretic examination of conventional manufacturing procedures continue to be a topic of modern research. It is assisted, to a great extent, by the spread and the possibility of the application of high level software and more accurate measuring equipment. The research results obtained by the use of new equipment can open new ways for further development of conventional manufacturing procedures and their more intensive, more productive application. In this paper, an experimental method is used for examination of the surface features (e.g. flatness, 2D and 3D surface roughness parameters) of face milled aluminium parts. The aim of experiments was to determine the effect of change of the technological parameters (feed rate and cutting speed) on flatness and surface roughness features in of face milling of aluminium parts.


2015 ◽  
Vol 10 (4) ◽  
pp. 155892501501000
Author(s):  
Sara Asghari Mooneghi ◽  
S. Mohammad Hosseini Varkiyani ◽  
Siamak Saharkhiz

Surface roughness is of paramount importance in predicting tactile properties of fabrics. This study aimed at investigating surface roughness and the effect of this property on the abrasion resistance of worsted fabrics. Nine different groups of worsted fabrics were produced. The fabrics had three weave types and three areal densities. A non-contact laser based system was developed to scan the surface of the fabrics. In order to extract the surface roughness profile, a new method of data analysis was presented. Several two dimensional (2D) and three dimensional (3D) roughness parameters were introduced and calculated. Statistical analysis proved that the effect of weave type and weft density was significant on all of the 2D and 3D surface roughness parameters at a confidence range of 95%. However, the 3D parameters provided the surface roughness with just one number in comparison with the 2D ones (warp and weft directions). Therefore, the 3D parameters provided a better indication for the surface roughness which had the effect of both warp and weft directions. Results showed that there was a strong linear correlation between the abrasion resistance and the 3D roughness parameters.


2018 ◽  
Vol 1 (2) ◽  
pp. 154-169 ◽  
Author(s):  
Anwesa Barman ◽  
Manas Das

Titanium alloy is used in medical industries due to its biocompatibility. Requirement of implant’s surface roughness and surface topography depends mainly upon its application. In the present study, application of titanium alloy is considered as femoral knee joint implant. The capability of magnetic field assisted finishing (MFAF) process and the polishing tool to provide implant worthy surface is analyzed here. In MFAF process, magnetorheological fluid mixed with abrasive powder in acidic base medium is used as the finishing medium. Characterization of the finished surface is carried out by analyzing 3D surface roughness parameters. The selected 3D surface parameters ( Sa, Spk, Sk and Svk) are considered due to their importance concerning load-bearing articulating surface of knee joint implant. Statistical design of experiment is used for experimental study and subsequently process parameters are optimized. From experimental investigation, the values of Sa, Spk, Sk and Svk are obtained as 11.32 nm, 15.82 nm, 6.51 nm and 41.15 nm, respectively, at optimum process parameter condition. The optimum process parameter values are 901 rpm of the tool, 0.60-mm working gap and 4.30 hrs of finishing time. The obtained values of 3D surface roughness parameters are in the nanometer range and the surface topography will render better wear properties, performance and longer implant life. Further confirmation experiments support the optimized values. The effect of individual process parameter on output responses is also analyzed.


2019 ◽  
Vol 27 (01) ◽  
pp. 1950081 ◽  
Author(s):  
CHUNHUI JI ◽  
SHUANGQIU SUN ◽  
BIN LIN ◽  
TIANYI SUI

This work performed molecular dynamic simulations to study the 2D profile and 3D surface topography in the nanometric cutting process. The least square mean method was used to model the evaluation criteria for the surface roughness at the nanometric scale. The result showed that the cutting speed was the most important factor influencing the spacing between the peaks, the sharpness of the peaks, and the randomness of the profile. The plastic deformation degree of the machined surface at the nanometric scale was significantly influenced by the cutting speed and depth of cut. The 2D and 3D surface roughness parameters exhibited a similar variation tendency, and the parameters Ra and Rq tended to increase gradually with an increase in the cutting speed and a decrease in the depth of cut. Finally, it is concluded that at the nanometric scale, the 3D surface roughness parameters could more accurately reflect the real surface characteristics than the 2D parameters.


2017 ◽  
Vol 54 (2) ◽  
pp. 64-71
Author(s):  
A. Leitans ◽  
J. Lungevics ◽  
J. Rudzitis ◽  
A. Filipovs

Abstract The present paper discusses and analyses tribological properties of various coatings that increase surface wear resistance. Four Ti/C-N nanocoatings with different coating deposition settings are analysed. Tribological and metrological tests on the samples are performed: 2D and 3D parameters of the surface roughness are measured with modern profilometer, and friction coefficient is measured with CSM Instruments equipment. Roughness parameters Ra, Sa, Sz, Str, Sds, Vmp, Vmc and friction coefficient at 6N load are determined during the experiment. The examined samples have many pores, which is the main reason for relatively large values of roughness parameter. A slight wear is identified in all four samples as well; its friction coefficient values range from 0,.21 to 0.29. Wear rate values are not calculated for the investigated coatings, as no expressed tribotracks are detected on the coating surface.


Sign in / Sign up

Export Citation Format

Share Document