scholarly journals PERAN KOMPLEKS JUKSTAGLOMERULUS TERHADAP RESISTENSI PEMBULUH DARAH

2013 ◽  
Vol 4 (3) ◽  
Author(s):  
Renny M. Toreh ◽  
Sonny J.R. Kalangi ◽  
Sunny Wangko

Abstract: As the main structural component of the renin-angiotensin-aldosterone system (RAAS), the juxtaglomerular complex plays a very important role in the regulation of vascular resistance. The synthesis and release of renin into the circulation occurs due to the decrease of blood pressure, loss of body fluid, and a decrease of sodium intake. Renin converts angiotensinogen into angiotensin I, which is further converted by the angiotensin converting enzyme (ACE) into angiotensin II. This angiotensin II causes vasoconstriction of blood vessels, resulting in an increase of vascular resistance and blood pressure. The ACE inhibitors and the angiotensin receptor blockers (ARBs) do not inhibit the RAAS completely since they cause an increase of renin activity. The renin blockers are more effective in inhibiting RAAS activity; therefore, these renin blockers can be applied as antihypertensive agents with fewer side effects. The RAAS activity can be inhibited by a decrease of renin synthesis in the juxtaglomerular complex by blocking the signals in the juxtaglomerular complex that stimulate renin synthesis, and by blocking the gap junctions in the juxtaglomerular complex. Keywords: juxtaglomerular complex, vascular resistance, RAAS.   Abstrak: Kompleks jukstaglomerulus sebagai komponen struktural utama sistem renin angiotensin berperan penting dalam pengaturan resistensi pembuluh darah. Sintesis dan pelepasan renin ke sirkulasi terjadi karena tekanan darah yang rendah, kehilangan cairan tubuh, dan kurangnya intake natrium. Renin akan memecah angiotensinogen menjadi angiotesin I yang kemudian secara cepat dikonversi oleh enzim pengonversi angiotensin  menjadi angiotensin II. Angiotensin II menyebabkan vasokontriksi pembuluh darah sehingga meningkatkan resistensi pembuluh darah yang pada akhirnya akan meningkatkan tekanan darah. ACEinhibitor dan ARB kurang sempurna dalam menghambat kerja SRAA oleh karena keduanya memutuskan rantai mekanisme timbal balik sehingga meningkatkan aktifitas renin. Penghambat renin lebih efektif digunakan untuk menghambat aktifitas SRAA sehingga penghambat renin dapat digunakan sebagai obat anti-hipertensi dan memiliki efek samping yang rendah. Metode penghambatan SRAA yang juga dapat dikembangkan ialah penghambatan sintesis renin dalam kompleks jukstaglomerulus dengan cara menekan sinyal-sinyal dalam kompleks jukstaglomerulus yang merangsang sintesis renin dan menghambat fungsi taut kedap yang terdapat dalam kompleks jukstaglomerulus. Kata kunci: kompleks juksta glomerulus, resistensi vaskular, SRAA.

2005 ◽  
Vol 6 (1_suppl) ◽  
pp. S8-S11
Author(s):  
Hans-Christoph Diener

Hypertension is the most important modifiable risk factor for primary and secondary stroke prevention. All antihypertensive drugs are effective in primary prevention: the risk reduction for stroke is 30—42%. However, not all classes of drugs have the same effects: there is some indication that angiotensin receptor blockers may be superior to other classes of antihypertensive drugs in stroke prevention. Seventy-five percent of patients who present to hospital with acute stroke have elevated blood pressure within the first 24—48 hours. Extremes of systolic blood pressure (SBP) increase the risk of death or dependency. The aim of treatment should be to achieve and maintain the SBP in the range 140—160 mmHg. However, fast and drastic blood pressure lowering can have adverse consequences. The PROGRESS trial of secondary prevention with perindopril + indapamide versus placebo + placebo showed a decrease in numbers of stroke recurrences in patients given both active antihypertensive agents, more impressive for cerebral haemorrhage.There were also indications that active treatment might decrease the development of post-stroke dementia.


2021 ◽  
Vol 4 (Special2) ◽  
pp. 389-394
Author(s):  
Angela Madalina Lazar

Currently, there is a persisting dispute regarding the renin-angiotensin-aldosterone-system (RAAS) inhibitors' safety of use in COVID-19 pandemics. On one side, RAAS inhibitors appear to determine an overexpression of ACE2, the receptor of SARS-CoV-2. Therefore, they could increase the risk of SARS-CoV-2 infection and its degree of severity. On the other side, the discontinuation of RAAS leads to cardiovascular decompensation and has been discouraged by the major medical societies. Also, large-cohort studies report beneficial or at least neutral effects for the RAAS inhibitors in COVID-19 patients. Worldwide, millions of patients receive RAAS inhibitors for the treatment of hypertension and other important comorbidities. In this context, knowledge of the exact effect of these medications becomes of crucial significance. This paper aims to fill in a gap in the current knowledge and presents a putative mechanism by which RAAS inhibitor administration's beneficial results can be explained better. RAAS inhibitors can be beneficial, as they counteract the excessive detrimental activation of the classical angiotensin-converting enzyme (ACE) axis, decreasing the angiotensin II levels. The angiotensin receptor blockers (ARBs) increase the angiotensin II levels, while the angiotensin-converting enzyme inhibitors (ACEI) increase the angiotensin I levels; these substrates will compete with the SARS-CoV-2 for the ACE2 binding, decreasing the viral infectivity. In addition, following the RAAS inhibitors treatment, the up-regulated ACE2 will cleave these substrates (angiotensin I and II), particularly to angiotensin 1-7 that possesses vasodilator, protective effects.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Susan A. S. Farhadi ◽  
Kawa F. Dizaye

Background and Objectives. Thyroid hormones have an important role in the growth and development of various tissues including the kidney, which is the major site of renin release and the consequent angiotensin and aldosterone formation. Therefore any derangement in thyroid function can result in abnormal functioning in the renin-angiotensin-aldosterone system. The current study was undertaken to find the impact of using a direct renin inhibitor (Aliskiren) and an angiotensin-converting enzyme inhibitor (Fosinopril) on the components of the renin-angiotensin-aldosterone system (RAAS) in rats with thyroid dysfunctions. Method. Forty-two male albino rats were divided into three subgroups. First group (6 rats) served as control. Second group (18 rats) served as hyperthyroid group (6 rats positive control, 6 rats given Aliskiren, and 6 rats given Fosinopril). Third group (18 rats) served as hypothyroid group (6 rats positive control, 6 rats given Aliskiren, and 6 rats given Fosinopril). Induction of hyperthyroidism and hypothyroidism was done through daily oral administration of L-Thyroxine and Propylthiouracil, respectively. On day 40 of the study, the rats were sacrificed and blood was collected for estimation of renin, angiotensin I, angiotensin II, aldosterone, TSH, T3, and T4. The collected blood samples were also used for estimation of levels blood urea, serum creatinine, liver enzymes, and serum electrolytes. Blood pressure and urine collection were done on days 1 and 40. The collected urine was used for estimation of urine flow, sodium excretion, and potassium excretion rates. Results. In hypothyroid induced rats, serum renin level dropped as expected, while the use of Aliskiren and Fosinopril on these hypothyroid rats raised renin level due to the feedback mechanism. Both angiotensin I and II were significantly (P <0.05) lower than normal levels in the hypothyroid rats, unlike the level of aldosterone, which was higher than normal level. There was nonsignificant lowering in BP (systolic, diastolic, and mean BP) in the hypothyroid rats. Treatment of these rats with Aliskiren and Fosinopril did not lower the blood pressure more than normal when compared to the hypothyroid group. The hypothyroid rats also showed a decrease in level of serum creatinine. In hyperthyroid rats, there was a rise in levels of serum renin, angiotensin II, and aldosterone; nevertheless, the increase in angiotensin I level was significant. The use of Aliskiren and Fosinopril increased the level of renin nonsignificantly (decreased angiotensin I significantly). Hyperthyroid rats showed a significant increase in systolic, diastolic, and mean blood pressure. Both Aliskiren and Fosinopril increased urine flow, Na+   excretion, and K+ excretion rates. Aliskiren was better at reducing the high blood pressure. Conclusion. Aliskiren and Fosinopril in hyperthyroid rats decreased serum angiotensin I, angiotensin II, and aldosterone. Blockade of renin and inhibition of angiotensin-converting enzyme both resulted in a rebound increase in level of renin in hypothyroid rats. Aliskiren is better at controlling blood pressure in hyperthyroid rats. Urine flow, sodium excretion, and potassium excretion rates were improved by the use of Aliskiren and Fosinopril in hyperthyroid rats.


1984 ◽  
Vol 62 (2) ◽  
pp. 137-147 ◽  
Author(s):  
John X. Wilson

The mammalian renin–angiotensin system appears to be involved in the maintenance of blood volume and pressure because (i) sodium depletion, hypovolemia, and hypotension increase renin levels, and (ii) administration of exogenous angiotensin II rapidly increases mineralocorticoid and antidiuretic hormone production, transepithelial ion transport, drinking behavior, and peripheral vascular resistance. Are these also the physiological properties of the renin–angiotensin system in nonmammalian species? Signals for altered levels of renin activity have yet to be conclusively identified in nonmammalian vertebrates, but circulating renin levels are elevated by hypotension in teleost fish and birds. Systemic injection of angiotensin II causes an increase in arterial blood pressure in all the vertebrates studied, suggesting that barostatic control is a universal function of this hormone. Angiotensin II alters vascular tone by direct action on arteriolar muscles in some species, but at concentrations of the hormone which probably are unphysiological. More generally, angiotensin II increases blood pressure indirectly, by acting on the sympathetic nervous system. Catecholamines, derived from chromaffin cells and (or) from peripheral adrenergic nerves, mediate some portion of the vasopressor response to angiotensin II in cyclostomes, elasmobranchs, teleosts, amphibians, reptiles, mammals, and birds. Alteration of sympathetic outflow is a prevalent mechanism through which the renin–angiotensin system may integrate blood volume, cardiac output, and peripheral vascular resistance to achieve control of blood pressure and adequate perfusion of tissues.


2011 ◽  
Vol 301 (5) ◽  
pp. F953-F957 ◽  
Author(s):  
Michio Fukuda ◽  
Tamaki Wakamatsu-Yamanaka ◽  
Masashi Mizuno ◽  
Toshiyuki Miura ◽  
Tatsuya Tomonari ◽  
...  

Recently, we found that an angiotensin II receptor blocker (ARB) restored the circadian rhythm of the blood pressure (BP) from a nondipper to a dipper pattern, similar to that achieved with sodium intake restriction and diuretics (Fukuda M, Yamanaka T, Mizuno M, Motokawa M, Shirasawa Y, Miyagi S, Nishio T, Yoshida A, Kimura G. J Hypertens 26: 583–588, 2008). ARB enhanced natriuresis during the day, while BP was markedly lower during the night, resulting in the dipper pattern. In the present study, we examined whether the suppression of tubular sodium reabsorption, similar to the action of diuretics, was the mechanism by which ARB normalized the circadian BP rhythm. BP and glomerulotubular balance were compared in 41 patients with chronic kidney disease before and during ARB treatment with olmesartan once a day in the morning for 8 wk. ARB increased natriuresis (sodium excretion rate; UNaV) during the day (4.5 ± 2.2 to 5.5 ± 2.1 mmol/h, P = 0.002), while it had no effect during the night (4.3 ± 2.0 to 3.8 ± 1.6 mmol/h, P = 0.1). The night/day ratios of both BP and UNaV were decreased. The decrease in the night/day ratio of BP correlated with the increase in the daytime UNaV ( r = 0.42, P = 0.006). Throughout the whole day, the glomerular filtration rate ( P = 0.0006) and tubular sodium reabsorption ( P = 0.0005) were both reduced significantly by ARB, although UNaV remained constant (107 ± 45 vs. 118 ± 36 mmol/day, P = 0.07). These findings indicate that the suppression of tubular sodium reabsorption, showing a resemblance to the action of diuretics, is the primary mechanism by which ARB can shift the circadian BP rhythm into a dipper pattern.


1989 ◽  
Vol 256 (5) ◽  
pp. H1311-H1315 ◽  
Author(s):  
E. Holtzman ◽  
L. M. Braley ◽  
A. Menachery ◽  
G. H. Williams ◽  
N. K. Hollenberg

When sodium intake in the rat is reduced abruptly from the typical high level to a very low level (0.02%), sodium excretion falls exponentially, with a half time of 2-3 h. The result is that the rat achieves external sodium balance, in which intake equals excretion, on the new low intake within a few hours. In this study, we assessed the rate of activation of the renin-angiotensin-aldosterone axis and its contribution to blood pressure during that interval. Plasma renin activity and angiotensin II concentration had risen sharply within 8 h and did not change over the next 40 h. Plasma aldosterone concentration, on the other hand, continued to rise over 48 h. Within 8 h, blood pressure dependency on angiotensin II had increased sharply, as assessed by depressor responses to an angiotensin antagonist (Sar1-Ala8-angiotensin II) and to converting-enzyme inhibition (captopril). The depressor response to neither agent changed over the next 40 h. The pressor response to angiotensin II was blunted significantly by 8 h and also did not change over the next 40 h. The findings indicate that the rapid tempo of sodium homeostasis in the rat is matched by an equally rapid tempo of activation of the renin-angiotensin system, although the factors responsible for aldosterone release are probably more complex. Experiments to assess the renin-angiotensin system in the rat must be designed with this rapid tempo in mind.


1998 ◽  
Vol 9 (9) ◽  
pp. 1716-1722
Author(s):  
C M Ferrario ◽  
M C Chappell ◽  
R H Dean ◽  
S N Iyer

Accumulating evidence suggests that angiotensin-(1-7) is an important component of the renin-angiotensin system, having actions that are either identical to or opposite that of angiotensin II. Angiotensin I can be directly converted to angiotensin-(1-7), bypassing formation of angiotensin II. This pathway is under the control of three enzymes: neutral endopeptidases 24.11 (neprilysin) and 24.15 and prolyl-endopeptidase 24.26. Two of the three angiotensin-forming enzymes (neprilysin and endopeptidase 24.15) also contribute to the breakdown of bradykinin and the atrial natriuretic peptide. Furthermore, angiotensin-(1-7) is a major substrate for angiotensin-converting enzyme. These observations suggest that the process of biotransformation between the various Ang peptides of the renin-angiotensin system and other vasodepressor peptides are intertwined through this enzymatic pathway. Substantial evidence suggests that angiotensin-(1-7) stimulates the synthesis and release of vasodilator prostaglandins, and nitric oxide, while also augmenting the metabolic actions of bradykinin. In addition, angiotensin-(1-7) alters tubular sodium and bicarbonate reabsorption, decreases Na+-K+-ATPase activity, induces diuresis, and exerts a vasodilator effect. These physiologic effects of angiotensin-(1-7) favor a blood pressure-lowering effect. The majority of the data currently available suggest that angiotensin-(1-7) mediates its effects through a novel non-AT1/AT2 receptor subtype.


Author(s):  
Davide Ventura ◽  
Amy L Carr ◽  
R Duane Davis ◽  
Scott Silvestry ◽  
Linda Bogar ◽  
...  

Abstract It has been established SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2), a membrane-bound regulatory peptide, for host cell entry. Renin-angiotensin-aldosterone system (RAAS) inhibitors have been reported to increase ACE2 in type 2 pneumocytes pulmonary tissue. Controversy exists for the continuation of ACE inhibitors, angiotensin II receptor blockers (ARBs), and mineralocorticoid receptor antagonists (MRAs) in the current pandemic. ACE2 serves as regulatory enzyme in maintaining homeostasis between proinflammatory Angiotensin II and anti-inflammatory Angiotensin 1,7 peptides. Derangements in these peptides are associated with cardiovascular disease and are implicated in the progression of acute respiratory distress syndrome (ARDS). Augmentation of the ACE2/Ang1,7 axis represent a critical target in the supportive management of COVID-19 associated lung disease. Observational data describing the use of RAAS inhibitors in the setting of SARS-CoV-2 have not borne signals of harm to date. However, equipoise persists requiring an analysis of novel agents including recombinant human-ACE2 and existing RAAS inhibitors while balancing ongoing controversies associated with increased coronavirus infectivity and virulence.


Sign in / Sign up

Export Citation Format

Share Document