scholarly journals TECHNOLOGICAL FEATURES OF BIOCOMPOSTING OF ORGANIC MATTER WITH UKRAINIAN PHOSPHORITES AND USE OF PSEUDOMONAS PUTIDA 17

2012 ◽  
Vol 14 ◽  
pp. 41-48
Author(s):  
M.V Gatsenko ◽  
V.V. Volkogon ◽  
N.V. Lutsenko

The certain features of composting of organic matter enriched with phosphorites and phosphate-mobilizing bacteria Pseudomonas putida 17 were investigated. The effect of different kinds of phosphate flour and bacterial load on the release of water-soluble phosphorus at vermicomposting of cattle manure was determined. It resulted in optimization of composting duration, dose of bacterial suspension and phosphorus in order to produce compost with best indexes of watersoluble phosphates content.

2011 ◽  
Vol 12 ◽  
pp. 165-171
Author(s):  
M.V. Gatsenko

The active strains of microorganisms capable of mobilizing phosphorus from sparingly soluble compounds were isolated from the vermicompost. Representatives of the genera Pseudomonas has dominated in association of phosphate mobilizing humus microbiota. The Pseudomonas sp. culture able to release the biggest amount of water-soluble phosphorus at vermicomposting of organic enriched with phosphorites was isolated. Basing on the analysis of morphological, cultural, physiological and biochemical properties studied strain was identified as Pseudomonas putida.


2006 ◽  
Vol 43 (6) ◽  
pp. 683-690 ◽  
Author(s):  
Tsutomu Ohno ◽  
Bruce R. Hoskins ◽  
M. Susan Erich

2018 ◽  
Vol 53 ◽  
pp. 04016
Author(s):  
Juan Ma ◽  
Fang-yan Chen ◽  
Yu-bin Tang ◽  
Xin-gang Wang

Aiming at effectively controlling nonylphenol (NP) pollution, three bacterial strains were isolated from activated sludge and landfill leachate, which could grow with nonylphenol as sole carbon and energy source. The three nonylphenol-degrading bacteria isolated were named as WN6, SLY9 and SLY10, respectively. The morphological observation and 16S rDNA identification revealed that the strains belonged to Serratia sp., Klebsiella sp. and Pseudomonas putida, respectively. WN6 and SLY9 contained ALK gene, while WN6 and SLY10 harbored C12O genes. The three strains were combined together to form complex microorganisms ZJF. The ratio of Serratia sp. to Klebsiella sp. to Pseudomonas putida was 2:1:2 (volume ratio of bacterial suspension). Under the conditions that temperature was 30 ℃, pH was 6, inoculation amount was 10% (volume ratio), initial concentration of NP solutions was 20 mg/L, NP degradation rate by ZJF reached 73.82%, compared with any single strain of the three bacteria, NP degradation rate by ZJF increased more than 15% during 6 days. Bioremediation of nonylphenol-polluted the Yangtze River and the Ancient Canal water by ZJF ware simulated. After a 6-day incubation period, the degrading rate of nonylphenol in Ancient Canal water was close to 80%, and the degrading rate of nonylphenol in Yangtze River water was 72.84%.


2012 ◽  
Vol 38 (1) ◽  
pp. 40-42 ◽  
Author(s):  
O. A. Gutorova ◽  
A. Kh. Sheudzhen ◽  
A. G. Ladatko

1983 ◽  
Vol 100 (1) ◽  
pp. 43-62 ◽  
Author(s):  
Elisabeth Grenet

SUMMARYThe digestibility, the voluntary intake and the nitrogen balance of 108 diets corresponding to 94 silages prepared from 20 fresh crops were measured in growing sheep. Series of silages were made from the same fresh forage. Each series included two controls: a direct-cut silage without additive and a direct-cut silage with formic acid, with a variable number of experimental silages with different additives.Rumen ammonia concentration, measured on rumen-fistulated sheep, decreased when an additive was used. It increased with nitrogen intake and was inversely related to the organic-matter digestibility and the crude-fibre digestibility. It varied with the silage composition.The crude-protein digestibility of direct-cut silages without additives was similar to or slightly higher than the crude-protein digestibility of the fresh crops. The addition of formic acid depressed the digestibility, but the addition of formaldehyde decreased it even more. The urinary nitrogen loss was higher for silages without additive than for the fresh crops and was decreased by the addition of formic acid. The addition of formaldehyde to formic acid had an additive effect.Retained nitrogen was lower in silages without additives (12% of nitrogen intake) than in parent crops (15·7%). It increased when formic acid (15·8%) was added. The addition of formaldehyde at a low rate (1·5 l/t green fodder) to the formic acid did not increase the nitrogen retention whether expressed in g/day or as percentage of nitrogen intake, but the addition of formaldehyde at a high rate (3·5 l/t green fodder) to formic acid decreased nitrogen retention. The other additives based on cereals or whey did not improve the nitrogen balance compared with formic acid. Nitrogen retention differed according to plant species.Retained nitrogen increased with digestible organic-matter intake and nitrogen intake. It increased with the silage water-soluble carbohydrate content. The higher the silage fermentation product content (ammonia, lactic acid, propionic acid), the lower the retained nitrogen. It appears that the nitrogen value of silages can be high provided that the silages are well preserved and that excessive protein breakdown is avoided.


Sign in / Sign up

Export Citation Format

Share Document