scholarly journals Data -Enhanced Convolution Neural Networks for Wall Following Robot Navigation

Machine learning has been used for solving the Robot Navigation Task through the wall-following control. The wall-following control involves the movement of the robot in some directed direction maintaining a constant distance from a given wall. The path of the movement of robot is measured by ultrasonic sensors. Many machine learning methods have been used for this problem, as classifiers, but Convolution Neural Networks (CNN) outperforms them all with almost 98% of accuracy. This study compared the performance of five classifiers SVC, MLR, ANN, CNN-1D, and CNN-2D, which play the part of controller in the navigation work. We have used the ultrasonic sensor data to understand the hidden pattern in the navigation work and classified the actions by robot in terms of different motions performed by robot in response to it. The classification reports of CNN-2D and CNN-1D with Artificial Neural Networks (ANN) have also been presented in this paper. The smart Data-Enhancement used in proposed method significantly improves the classification performance of all classifiers, especially CNN.

2020 ◽  
Author(s):  
Nalika Ulapane ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda

<div>Classification has become a vital task in modern machine learning and Artificial Intelligence applications, including smart sensing. Numerous machine learning techniques are available to perform classification. Similarly, numerous practices, such as feature selection (i.e., selection of a subset of descriptor variables that optimally describe the output), are available to improve classifier performance. In this paper, we consider the case of a given supervised learning classification task that has to be performed making use of continuous-valued features. It is assumed that an optimal subset of features has already been selected. Therefore, no further feature reduction, or feature addition, is to be carried out. Then, we attempt to improve the classification performance by passing the given feature set through a transformation that produces a new feature set which we have named the “Binary Spectrum”. Via a case study example done on some Pulsed Eddy Current sensor data captured from an infrastructure monitoring task, we demonstrate how the classification accuracy of a Support Vector Machine (SVM) classifier increases through the use of this Binary Spectrum feature, indicating the feature transformation’s potential for broader usage.</div><div><br></div>


2014 ◽  
Vol 10 (S306) ◽  
pp. 279-287 ◽  
Author(s):  
Michael Hobson ◽  
Philip Graff ◽  
Farhan Feroz ◽  
Anthony Lasenby

AbstractMachine-learning methods may be used to perform many tasks required in the analysis of astronomical data, including: data description and interpretation, pattern recognition, prediction, classification, compression, inference and many more. An intuitive and well-established approach to machine learning is the use of artificial neural networks (NNs), which consist of a group of interconnected nodes, each of which processes information that it receives and then passes this product on to other nodes via weighted connections. In particular, I discuss the first public release of the generic neural network training algorithm, calledSkyNet, and demonstrate its application to astronomical problems focusing on its use in the BAMBI package for accelerated Bayesian inference in cosmology, and the identification of gamma-ray bursters. TheSkyNetand BAMBI packages, which are fully parallelised using MPI, are available athttp://www.mrao.cam.ac.uk/software/.


2017 ◽  
Author(s):  
◽  
Zeshan Peng

With the advancement of machine learning methods, audio sentiment analysis has become an active research area in recent years. For example, business organizations are interested in persuasion tactics from vocal cues and acoustic measures in speech. A typical approach is to find a set of acoustic features from audio data that can indicate or predict a customer's attitude, opinion, or emotion state. For audio signals, acoustic features have been widely used in many machine learning applications, such as music classification, language recognition, emotion recognition, and so on. For emotion recognition, previous work shows that pitch and speech rate features are important features. This thesis work focuses on determining sentiment from call center audio records, each containing a conversation between a sales representative and a customer. The sentiment of an audio record is considered positive if the conversation ended with an appointment being made, and is negative otherwise. In this project, a data processing and machine learning pipeline for this problem has been developed. It consists of three major steps: 1) an audio record is split into segments by speaker turns; 2) acoustic features are extracted from each segment; and 3) classification models are trained on the acoustic features to predict sentiment. Different set of features have been used and different machine learning methods, including classical machine learning algorithms and deep neural networks, have been implemented in the pipeline. In our deep neural network method, the feature vectors of audio segments are stacked in temporal order into a feature matrix, which is fed into deep convolution neural networks as input. Experimental results based on real data shows that acoustic features, such as Mel frequency cepstral coefficients, timbre and Chroma features, are good indicators for sentiment. Temporal information in an audio record can be captured by deep convolutional neural networks for improved prediction accuracy.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7232
Author(s):  
Costel Anton ◽  
Silvia Curteanu ◽  
Cătălin Lisa ◽  
Florin Leon

Most of the time, industrial brick manufacture facilities are designed and commissioned for a particular type of manufacture mix and a particular type of burning process. Productivity and product quality maintenance and improvement is a challenge for process engineers. Our paper aims at using machine learning methods to evaluate the impact of adding new auxiliary materials on the amount of exhaust emissions. Experimental determinations made in similar conditions enabled us to build a database containing information about 121 brick batches. Various models (artificial neural networks and regression algorithms) were designed to make predictions about exhaust emission changes when auxiliary materials are introduced into the manufacture mix. The best models were feed-forward neural networks with two hidden layers, having MSE < 0.01 and r2 > 0.82 and, as regression model, kNN with error < 0.6. Also, an optimization procedure, including the best models, was developed in order to determine the optimal values for the parameters that assure the minimum quantities for the gas emission. The Pareto front obtained in the multi-objective optimization conducted with grid search method allows the user the chose the most convenient values for the dry product mass, clay, ash and organic raw materials which minimize gas emissions with energy potential.


Author(s):  
Sook-Ling Chua ◽  
Stephen Marsland ◽  
Hans W. Guesgen

The problem of behaviour recognition based on data from sensors is essentially an inverse problem: given a set of sensor observations, identify the sequence of behaviours that gave rise to them. In a smart home, the behaviours are likely to be the standard human behaviours of living, and the observations will depend upon the sensors that the house is equipped with. There are two main approaches to identifying behaviours from the sensor stream. One is to use a symbolic approach, which explicitly models the recognition process. Another is to use a sub-symbolic approach to behaviour recognition, which is the focus in this chapter, using data mining and machine learning methods. While there have been many machine learning methods of identifying behaviours from the sensor stream, they have generally relied upon a labelled dataset, where a person has manually identified their behaviour at each time. This is particularly tedious to do, resulting in relatively small datasets, and is also prone to significant errors as people do not pinpoint the end of one behaviour and commencement of the next correctly. In this chapter, the authors consider methods to deal with unlabelled sensor data for behaviour recognition, and investigate their use. They then consider whether they are best used in isolation, or should be used as preprocessing to provide a training set for a supervised method.


Author(s):  
G. S. Karthick ◽  
P. B. Pankajavalli

The rapid innovations in technologies endorsed the emergence of sensory equipment's connection to the Internet for acquiring data from the environment. The increased number of devices generates the enormous amount of sensor data from diversified applications of Internet of things (IoT). The generation of data may be a fast or real-time data stream which depends on the nature of applications. Applying analytics and intelligent processing over the data streams discovers the useful information and predicts the insights. Decision-making is a prominent process which makes the IoT paradigm qualified. This chapter provides an overview of architecting IoT-based healthcare systems with different machine learning algorithms. This chapter elaborates the smart data characteristics and design considerations for efficient adoption of machine learning algorithms into IoT applications. In addition, various existing and hybrid classification algorithms are applied to sensory data for identifying falls from other daily activities.


Sign in / Sign up

Export Citation Format

Share Document