scholarly journals Groundwater Potential Zone Mapping using Geospatial Techniques in Walayar Watershed

The groundwater is the most important resources everywhere in the world and is decrease gradually. In construction, here is a need for separation of groundwater possible region. As the awareness and needs of the common people towards water is increasing the estimation of water is touched in all divisions. At the same time, surface water assets are getting to be insufficient to satisfy the water request. With the goal that systematic ordering of groundwater development using present-day system is important for the right management and use of this respected asset. Yet at the same time, groundwater assets have not yet been accurately damaged, keeping this in view, the current analysis have contained to outline the groundwater potential regions in Varattar river basin Tamilnadu & Kerala by using geospatial approach. The geospatial have turned out to be one of the substantial tools in the field of subsurface water study, which assistances in surveying, observing and monitoring groundwater capitals. Now to identify the groundwater possible region applied through various topical maps of geomorphology, streams, soil, land use/land cover and slope with IDW strategies. From the overall outcome, the groundwater investigation zone orderly into five classes called as very good, good, moderate, poor and very poor. This research to recommended that great potential zone of groundwater arise in the areas of south west north central part of study area in the Coimbatore and Palakkad districts. The result showed that converse distance weightage technique offers an effective tool for understanding groundwater possible regions for appropriate growth and management of water level resources in different hydrogeological surroundings.

2019 ◽  
Vol 8 (4) ◽  
pp. 3548-3555

Water is one of the primary requirements of any region for sustainable economic development. There are number of limitations regarding availability of surface and subsurface water due to various reasons, hence exploration of groundwater becomes inevitable. Main objective of this study was to map groundwater potential zones for study area using geospatial tools; which comprises of watersheds in Upper Bhima Basin, Pune district. The primary groundwater controlling factors considered are geomorphology, soil, land use land cover, slope, drainage density and lineament density; for which respective maps were prepared using satellite image, toposheets and incidental data. Maps for various layers according to above said controlling factors were generated from different data collected. Finally these thematic layers were integrated using ArcGIS software to prepare groundwater potential zone map for the study area. Groundwater potential zones were marked as ‘very poor, ‘poor’, ‘moderate’, ‘good’ and ‘very good’, based on knowledge based weightage factor. This, geo-spatial techniques based, result was validated using field data collected from the study area. It is concluded that using geospatial tool, identification and mapping for groundwater potential zones become comparatively easy task with saving lot of time and cost and with greater accuracy.


2019 ◽  
Vol 2 (2) ◽  
pp. 124-133
Author(s):  
Krushnath Shirke ◽  
Kunal Bandivdekar

The study was conducted to find out the groundwater potential zones (GWPZ) by using geospatial techniques in Phonda basin in Sindhudurg district of Maharashtra (India). Analytical Hierarchical Process (AHP) was used to demarcate the GWPZ using thematic layers: geology, geomorphology, lineament density, drainage density, elevation, slope, soil, rainfall and land use land cove (LULC). The ranks were assigned for each individual parameter of thematic layer and weights assigned to each thematic layer and final groundwater map was prepared by intersection all thematic layers in Arc GIS environment. GWPZs were categorized as: low, moderate, high and very high. Geological factors are influencing groundwater potentials according to geological formations and human activities. Geological influence approach of delineating the GWPZ is useful for planning and monitoring the groundwater resource for sustainable development.


2020 ◽  
Vol 3 (3) ◽  
pp. 16-27
Author(s):  
Md. Abu Hamjalal Babu ◽  
Md. Risadul Islam ◽  
Fahim Farzana ◽  
Muhammad Jasim Uddin ◽  
Md. Sirajul Islam

Groundwater is the most significant assets on the planet and is declining continuously. The integration of GIS system and remote sensing turned into substantial tools in the field of subsurface water study, which assists in surveying, observing and monitoring the groundwater capitals. With this backdrop, using GIS and remote sensing application, a study was conducted to identify the potential groundwater zones in the hilly district Khagrachhari. The ground water potential zones were identified based on different thematic maps such as drainage, density, lineament density, slope, land use or land cover, soil and geology by using weighted overlay analysis. The groundwater potential zones were investigated orderly into four classes known as poor, moderate, good and very good. This groundwater potential information will work as a guideline to the concerned local authority to identify effectively the suitable locations for the extraction of groundwater.


2021 ◽  
Author(s):  
MANJUNATHAN NARAYANAN ◽  
THIRUKUMARAN VENUGOPAL

Abstract The present research work is aimed to identify the groundwater potential zones in the Palar River Basin (PRB). The Auto Regressive Integrated Moving Average (ARIMA) model, and geospatial techniques were used to determine the Groundwater Potential Zone (GPZ). Time series analysis is commonly used in a broad range of scientific applications including hydrology, metrology, geo-statistics, engineering and environmental management fields. The geospatial historical data of rainfall and water level recorded at yearly intervals for 14 years (2005 to 2018) was used to identify the fluctuation of water level with respect to rainfall with lower and upper confidence levels and eventually leads to identify the spatial variation of the groundwater potential zones. The ARIMA model evolved from analysis was further classified into Four types of goodness of fits namely excellent fit, good fit, poor fit, and no fit. The spatial variation of groundwater potential occurrence and behaviour of the region is controlled by geology, lineament, geomorphology and drainage. These layers have been integrated with the ArcGIS platform for generating Groundwater Potential Zone (GPZ) maps. The validation of the result shows that Excellent fits 40 wells (12.82%), good fits 108 wells (34.62%), poor fits 58 wells (16.66%), and no fits 106 wells (33.97%), the study area good groundwater potential zones approximately 47.44%. This research suggests that a good groundwater potential zone occurs in patches of the southern and eastern parts of the study area.


2019 ◽  
Vol 24 (6) ◽  
pp. 81
Author(s):  
Hawber A. Karim ◽  
Diary A. Al-Manmi

Groundwater is an important resource in Halabja Said Sadiq sab-basin, Sulaymaniyah district for agricultural and other uses. Continuous dramatic extraction of groundwater from legal and illegal wells led to a severe decline in the water table for the last thirty years. The objectives of this study are to delineate the groundwater productivity zones by combining the geographic information system and geoelectrical survey, which serves to recognize the locations of good groundwater storage and recharge zones. The Halabja Said Sadiq sub-basin has been selected as a case study to delineate the groundwater productivity zones. Four geoelectrical resistivity profiles conducted with electrode spacing 10 m and the length of the profiles is equal to 710 m.  Themes such as hydrogeology, land use/land cover, topography, drainage density, soil type, slope, lineaments and rainfall maps are created. The thematic maps made with GIS platform and appropriate weights put to the attributes taking into account the influence on the storage potential of groundwater. The results of geoelectrical profiles revealed that the aquifer thickness is 150 m. Three zones of groundwater potential delineated which are low, moderate and high and cover 33 %, 24 %, and 42 % of the total area respectively. Spatially, the highest zone is located along with the Quaternary deposits which characterized by high lineament density, low slop, and pediment deposition The output of the groundwater potential model is verified by testing the discharge rate of the existing 580 wells. The results are revealed that most of the high yield wells are located within the high groundwater potential zone. Results of such verifications proved that the groundwater productivity areas recognized by GIS (AHP) and geoelectrical techniques are dependable and practical.   http://dx.doi.org/10.25130/tjps.24.2019.112


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 669
Author(s):  
Abid Sarwar ◽  
Sajid Rashid Ahmad ◽  
Muhammad Ishaq Asif Rehmani ◽  
Muhammad Asif Javid ◽  
Shazia Gulzar ◽  
...  

The changing climate and global warming have rendered existing surface water insufficient, which is projected to adversely influence the irrigated farming systems globally. Consequently, groundwater demand has increased significantly owing to increasing population and demand for plant-based foods especially in South Asia and Pakistan. This study aimed to determine the potential areas for groundwater use for agriculture sector development in the study area Lower Dir District. ArcGIS 10.4 was utilized for geospatial analysis, which is referred to as Multi Influencing Factor (MIF) methodology. Seven parameters including land cover, geology, soil, rainfall, underground faults (liniment) density, drainage density, and slope, were utilized for delineation purpose. Considering relative significance and influence of each parameter in the groundwater recharge rating and weightage was given and potential groundwater areas were classified into very high, high, good, and poor. The result of classification disclosed that the areas of 113.10, 659.38, 674.68, and 124.17 km2 had very high, high, good, and poor potential for groundwater agricultural uses, respectively. Field surveys for water table indicated groundwater potentiality, which was high for Kotkay and Lalqila union councils having shallow water table. However, groundwater potentiality was poor in Zimdara, Khal, and Talash, characterized with a very deep water table. Moreover, the study effectively revealed that remote sensing and GIS could be developed as potent tools for mapping potential sites for groundwater utilization. Furthermore, MIF technique could be a suitable approach for delineation of groundwater potential zone, which can be applied for further research in different areas.


2021 ◽  
Vol 5 (1) ◽  
pp. 34-44
Author(s):  
B. Pradeep Kumar ◽  
K. Raghu Babu ◽  
M. Rajasekhar ◽  
M. Ramachandra

Freshwater scarcity is a major issue in Rayalaseema region in Andhra Pradesh (India). Groundwater is the primary source of drinking and irrigation water in Anantapur district, Andhra Pradesh, India. Therefore, it is important to identify areas having groundwater potential; however, the current methods of groundwater exploration consume a lot of time and money. Analytic Hierarchy Process (AHP)-based spatial model is used to identify groundwater potential zones in Anantapur using remote sensing and GIS-based decision support system. Thematic layers considered in this study were geology, geomorphology, soils, land use land cover (LULC), lineament density (LD), drainage density (DD), slope, and rainfall. According to Saaty’s AHP, all these themes and individual features were weighted according to their relative importance in groundwater occurrence. Thematic layers were finally combined using ArcGIS to prepare a groundwater potential zone map. The high weighted value area was considered a groundwater prospecting region. Accordingly, the GWPZ map was classified into four categories: very good, good, moderate, and poor. The very good GWPZ area is 77.37 km2 (24.93%) of the total study area. The northeastern and southeastern sections of the study area, as well as some medium patches in the center and western regions, are covered by moderate GWPZs, which cover an area of 53.07 km2 (17.10%). However, the GWP in the study area’s central, southwestern, and northern portions is poor, encompassing an area of approximately 79.31 km2 (25.56%). Finally, RS and GIS techniques are highly effective and useful for identifying GWPZs.


Author(s):  
K Choudhary ◽  
M S Boori ◽  
A Kupriyanov

The main objective of this study was to detect groundwater availability for agriculture in the Orenburg, Russia. Remote sensing data (RS) and geographic information system (GIS) were used to locate potential zones for groundwater in Orenburg. Diverse maps such as a base map, geomorphological, geological structural, lithology, drainage, slope, land use/cover and groundwater potential zone were prepared using the satellite remote sensing data, ground truth data, and secondary data. ArcGIS software was utilized to manipulate these data sets. The groundwater availability of the study was classified into different classes such as very high, high, moderate, low and very low based on its hydro-geomorphological conditions. The land use/cover map was prepared using a digital classification technique with the limited ground truth for mapping irrigated areas in the Orenburg, Russia.


Sign in / Sign up

Export Citation Format

Share Document