scholarly journals Integrating GIS-based and geophysical techniques for groundwater potential assessment in Halabja Said Sadiq sub-basin, Kurdistan, NE Iraq

2019 ◽  
Vol 24 (6) ◽  
pp. 81
Author(s):  
Hawber A. Karim ◽  
Diary A. Al-Manmi

Groundwater is an important resource in Halabja Said Sadiq sab-basin, Sulaymaniyah district for agricultural and other uses. Continuous dramatic extraction of groundwater from legal and illegal wells led to a severe decline in the water table for the last thirty years. The objectives of this study are to delineate the groundwater productivity zones by combining the geographic information system and geoelectrical survey, which serves to recognize the locations of good groundwater storage and recharge zones. The Halabja Said Sadiq sub-basin has been selected as a case study to delineate the groundwater productivity zones. Four geoelectrical resistivity profiles conducted with electrode spacing 10 m and the length of the profiles is equal to 710 m.  Themes such as hydrogeology, land use/land cover, topography, drainage density, soil type, slope, lineaments and rainfall maps are created. The thematic maps made with GIS platform and appropriate weights put to the attributes taking into account the influence on the storage potential of groundwater. The results of geoelectrical profiles revealed that the aquifer thickness is 150 m. Three zones of groundwater potential delineated which are low, moderate and high and cover 33 %, 24 %, and 42 % of the total area respectively. Spatially, the highest zone is located along with the Quaternary deposits which characterized by high lineament density, low slop, and pediment deposition The output of the groundwater potential model is verified by testing the discharge rate of the existing 580 wells. The results are revealed that most of the high yield wells are located within the high groundwater potential zone. Results of such verifications proved that the groundwater productivity areas recognized by GIS (AHP) and geoelectrical techniques are dependable and practical.   http://dx.doi.org/10.25130/tjps.24.2019.112

2021 ◽  
Vol 5 (1) ◽  
pp. 34-44
Author(s):  
B. Pradeep Kumar ◽  
K. Raghu Babu ◽  
M. Rajasekhar ◽  
M. Ramachandra

Freshwater scarcity is a major issue in Rayalaseema region in Andhra Pradesh (India). Groundwater is the primary source of drinking and irrigation water in Anantapur district, Andhra Pradesh, India. Therefore, it is important to identify areas having groundwater potential; however, the current methods of groundwater exploration consume a lot of time and money. Analytic Hierarchy Process (AHP)-based spatial model is used to identify groundwater potential zones in Anantapur using remote sensing and GIS-based decision support system. Thematic layers considered in this study were geology, geomorphology, soils, land use land cover (LULC), lineament density (LD), drainage density (DD), slope, and rainfall. According to Saaty’s AHP, all these themes and individual features were weighted according to their relative importance in groundwater occurrence. Thematic layers were finally combined using ArcGIS to prepare a groundwater potential zone map. The high weighted value area was considered a groundwater prospecting region. Accordingly, the GWPZ map was classified into four categories: very good, good, moderate, and poor. The very good GWPZ area is 77.37 km2 (24.93%) of the total study area. The northeastern and southeastern sections of the study area, as well as some medium patches in the center and western regions, are covered by moderate GWPZs, which cover an area of 53.07 km2 (17.10%). However, the GWP in the study area’s central, southwestern, and northern portions is poor, encompassing an area of approximately 79.31 km2 (25.56%). Finally, RS and GIS techniques are highly effective and useful for identifying GWPZs.


2019 ◽  
Vol 8 (4) ◽  
pp. 3548-3555

Water is one of the primary requirements of any region for sustainable economic development. There are number of limitations regarding availability of surface and subsurface water due to various reasons, hence exploration of groundwater becomes inevitable. Main objective of this study was to map groundwater potential zones for study area using geospatial tools; which comprises of watersheds in Upper Bhima Basin, Pune district. The primary groundwater controlling factors considered are geomorphology, soil, land use land cover, slope, drainage density and lineament density; for which respective maps were prepared using satellite image, toposheets and incidental data. Maps for various layers according to above said controlling factors were generated from different data collected. Finally these thematic layers were integrated using ArcGIS software to prepare groundwater potential zone map for the study area. Groundwater potential zones were marked as ‘very poor, ‘poor’, ‘moderate’, ‘good’ and ‘very good’, based on knowledge based weightage factor. This, geo-spatial techniques based, result was validated using field data collected from the study area. It is concluded that using geospatial tool, identification and mapping for groundwater potential zones become comparatively easy task with saving lot of time and cost and with greater accuracy.


Author(s):  
D. C. Jhariya ◽  
Rubia Khan ◽  
K. C. Mondal ◽  
Tarun Kumar ◽  
Indhulekha K. ◽  
...  

Abstract The present study involved the combined applications of advanced techniques and tools like remote sensing, GIS, electrical resistivity, MCDA, to assess the potential zones of groundwater occurrence. Several prepared thematic layers, including geology, geomorphology, rainfall, lineament, LULC, drainage density, soil type, slope, and soil texture, were assigned with a weight, depending on their influence on groundwater potential. Normalization concerned with relative contribution is applied in this study using the AHP method. Vertical electrical sounding has been conducted on different points to locate water-bearing formations/fracture zones. The resulting groundwater potential areas that are delineated applying these methods have been categorized into five zones, low, medium, medium-high, high, and very high potential. The groundwater potential zones demarcated show that high potential zones are present in the west and north-eastern portion, while low to medium groundwater potential is located in the central and eastern portion. The obtained result was validated using well yield data, and ROC method from which result accuracy obtained is 80% and the area under the ROC curve is found to be 0.857 at a significance value of less than 0.001, which justifies the efficacy of the proposed approach in the demarcation of groundwater potential zone.


The groundwater is the most important resources everywhere in the world and is decrease gradually. In construction, here is a need for separation of groundwater possible region. As the awareness and needs of the common people towards water is increasing the estimation of water is touched in all divisions. At the same time, surface water assets are getting to be insufficient to satisfy the water request. With the goal that systematic ordering of groundwater development using present-day system is important for the right management and use of this respected asset. Yet at the same time, groundwater assets have not yet been accurately damaged, keeping this in view, the current analysis have contained to outline the groundwater potential regions in Varattar river basin Tamilnadu & Kerala by using geospatial approach. The geospatial have turned out to be one of the substantial tools in the field of subsurface water study, which assistances in surveying, observing and monitoring groundwater capitals. Now to identify the groundwater possible region applied through various topical maps of geomorphology, streams, soil, land use/land cover and slope with IDW strategies. From the overall outcome, the groundwater investigation zone orderly into five classes called as very good, good, moderate, poor and very poor. This research to recommended that great potential zone of groundwater arise in the areas of south west north central part of study area in the Coimbatore and Palakkad districts. The result showed that converse distance weightage technique offers an effective tool for understanding groundwater possible regions for appropriate growth and management of water level resources in different hydrogeological surroundings.


2021 ◽  
Author(s):  
Hemant Kumar Pandey ◽  
Vishal Kumar Singh ◽  
Sudhir Kumar Singh

Abstract The present study illustrates the delineation of the groundwater potential zones in one of the most critical and drought affected areas under Bundelkhand region of Uttar Pradesh. Hydrological evaluations were carried out in district Mahoba using GIS tools and remote sensing data which ultimately yielded several thematic maps, such as lineament density, land use/land cover, drainage density, lithology, slope, geomorphology, wetness index (WTI), altitude and soil. CartoDEM data which have spatial resolution of 30m i.e. equivalent to one arc second were used to create digital elevation model, drainage density, altitude, WTI and slope. The thematic layers were assigned relative weightages as per their groundwater potential prospects under multi-criteria decision making (MCDM) method through analytical hierarchy process (AHP). To recognize the groundwater potential zone, weighted overlay analysis was performed using ArcMap software. Additionally, for testing of the Dempster-Shafer model, 16 borewells in high potential areas have been selected. Based on the probability of the groundwater occurrence, the belief factor was equated. Further combining the weighted layers, groundwater potential zones were obtained. The groundwater potential maps illustrate five zones having different potential in the Mahoba district. According to the AHP model the north-west side of the study area is characterized with very good potential zones whereas the north-east and south-east region constitute medium and poor groundwater potential zones respectively. It reflects that more than 50% of the area is having medium groundwater potential while 30 percent of the area falls under low potential zone. 10% of the study area falls under very good groundwater potential zones. According to the DS model, very high groundwater zones constitute only 7% and the remaining area falls under poor potential. Overall accuracy of the DS model was higher than AHP model.


2020 ◽  
Vol 13 (22) ◽  
Author(s):  
Solomon Temidayo Owolabi ◽  
Kakaba Madi ◽  
Ahmed Mulakazi Kalumba ◽  
Israel Ropo Orimoloye

AbstractTheme unsuitability is noted to have inhibited the accuracy of groundwater potential zones (GWPZs) mapping approach, especially in a semi-arid environment where surface water supply is inadequate. This work, therefore presents a geoscience approach for mapping high-precision GWPZs peculiar to the semi-arid area, using Buffalo catchment, Eastern Cape, South Africa, as a case study. Maps of surficial-lithology, lineament-density, drainage-density, rainfall-distribution, normalized-difference-vegetation-index, topographic-wetness-index, land use/land cover, and land-surface-temperature were produced. These were overlaid based on analytical hierarchical process weightage prioritization at a constituency ratio of 0.087. The model categorizes GWPZs into the good (187 km2), moderate (338 km2), fair (406 km2), poor (185 km2), and very poor (121 km2) zones. The model validation using borehole yield through on the coefficient of determination (R2 = 0.901) and correlation (R = 0.949) indicates a significant replication of ground situation (p value < 0.001). The analysis corroboration shows that the groundwater is mainly hosted by a fractured aquifer where the GWPZs is either good (9.3 l/s) or moderate (5.5 l/s). The overall result indicates that the model approach is reliable and can be adopted for a reliable characterization of GWPZs in any semi-arid/arid environment.


2019 ◽  
Vol 2 (2) ◽  
pp. 124-133
Author(s):  
Krushnath Shirke ◽  
Kunal Bandivdekar

The study was conducted to find out the groundwater potential zones (GWPZ) by using geospatial techniques in Phonda basin in Sindhudurg district of Maharashtra (India). Analytical Hierarchical Process (AHP) was used to demarcate the GWPZ using thematic layers: geology, geomorphology, lineament density, drainage density, elevation, slope, soil, rainfall and land use land cove (LULC). The ranks were assigned for each individual parameter of thematic layer and weights assigned to each thematic layer and final groundwater map was prepared by intersection all thematic layers in Arc GIS environment. GWPZs were categorized as: low, moderate, high and very high. Geological factors are influencing groundwater potentials according to geological formations and human activities. Geological influence approach of delineating the GWPZ is useful for planning and monitoring the groundwater resource for sustainable development.


2021 ◽  
Vol 6 (2) ◽  
pp. 36-52
Author(s):  
Azarias Woldegebriel ◽  
◽  
Temesgen Amibo ◽  
Abreham Bayu ◽  
◽  
...  

This study focused on delineating the groundwater potential and recharge area for Kaffa Zone by the method of remote sensing and ArcGIS 10.4 software analysis techniques. There are six main influencing factors (rainfall, slope, land use/cover, lineaments, drainage density, and Lithology) selected for groundwater recharge zone mapping. The thematic maps were scanned, geo-referenced, and classified as suitable for groundwater using ArcGIS 10.4. The methods to assess the potential zone were using weight overlay analysis and hierarchy of analytical process algorithm. The result obtained the potential of ground water were discussed recharge zones into four major categories: very good, good, and moderate and low. This can help for better planning and management the potential resource of groundwater. The results analyzed the groundwater potential that were subdivided in to low, moderate, high, and very high groundwater potentials areas that cover 1664.1,7682.9, 958.27, and 192.78 km2 respectively. The prediction accuracy was checked based on the borehole yield observed and predicted data of respective locations within the selected area. The prediction accuracy obtained (68.42%) reflects that the present study's method was produced significantly reliable and precise results.


Sign in / Sign up

Export Citation Format

Share Document