scholarly journals Object Detection Based on Faster R-Cnn

Author(s):  
M. Sushma Sri ◽  
B. Rajendra Naik ◽  
K. Jaya Sankar

In recent years there is rapid improvement in Object detection in areas of video analysis and image processing applications. Determing a desired object became an important aspect, so that there are many numerous of methods are evolved in Object detection. In this regard as there is rapid development in Deep Learning for its high-level processing, extracting deeper features, reliable and flexible compared to conventional techniques. In this article, the author proposes Object detection with deep neural networks and faster region convolutional neural networks methods for providing a simple algorithm which provides better accuracy and mean average precision.

Author(s):  
Jwalin Bhatt ◽  
Khurram Azeem Hashmi ◽  
Muhammad Zeshan Afzal ◽  
Didier Stricker

In any document, graphical elements like tables, figures, and formulas contain essential information. The processing and interpretation of such information require specialized algorithms. Off-the-shelf OCR components cannot process this information reliably. Therefore, an essential step in document analysis pipelines is to detect these graphical components. It leads to a high-level conceptual understanding of the documents that makes digitization of documents viable. Since the advent of deep learning, the performance of deep learning-based object detection has improved many folds. In this work, we outline and summarize the deep learning approaches for detecting graphical page objects in the document images. Therefore, we discuss the most relevant deep learning-based approaches and state-of-the-art graphical page object detection in document images. This work provides a comprehensive understanding of the current state-of-the-art and related challenges. Furthermore, we discuss leading datasets along with the quantitative evaluation. Moreover, it discusses briefly the promising directions that can be utilized for further improvements.


Author(s):  
Xiayu Chen ◽  
Ming Zhou ◽  
Zhengxin Gong ◽  
Wei Xu ◽  
Xingyu Liu ◽  
...  

Deep neural networks (DNNs) have attained human-level performance on dozens of challenging tasks via an end-to-end deep learning strategy. Deep learning allows data representations that have multiple levels of abstraction; however, it does not explicitly provide any insights into the internal operations of DNNs. Deep learning's success is appealing to neuroscientists not only as a method for applying DNNs to model biological neural systems but also as a means of adopting concepts and methods from cognitive neuroscience to understand the internal representations of DNNs. Although general deep learning frameworks, such as PyTorch and TensorFlow, could be used to allow such cross-disciplinary investigations, the use of these frameworks typically requires high-level programming expertise and comprehensive mathematical knowledge. A toolbox specifically designed as a mechanism for cognitive neuroscientists to map both DNNs and brains is urgently needed. Here, we present DNNBrain, a Python-based toolbox designed for exploring the internal representations of DNNs as well as brains. Through the integration of DNN software packages and well-established brain imaging tools, DNNBrain provides application programming and command line interfaces for a variety of research scenarios. These include extracting DNN activation, probing and visualizing DNN representations, and mapping DNN representations onto the brain. We expect that our toolbox will accelerate scientific research by both applying DNNs to model biological neural systems and utilizing paradigms of cognitive neuroscience to unveil the black box of DNNs.


2021 ◽  
Author(s):  
Matan Fintz ◽  
Margarita Osadchy ◽  
Uri Hertz

AbstractDeep neural networks (DNN) models have the potential to provide new insights in the study of human decision making, due to their high capacity and data-driven design. While these models may be able to go beyond theory-driven models in predicting human behaviour, their opaque nature limits their ability to explain how an operation is carried out. This explainability problem remains unresolved. Here we demonstrate the use of a DNN model as an exploratory tool to identify predictable and consistent human behaviour in value-based decision making beyond the scope of theory-driven models. We then propose using theory-driven models to characterise the operation of the DNN model. We trained a DNN model to predict human decisions in a four-armed bandit task. We found that this model was more accurate than a reinforcement-learning reward-oriented model geared towards choosing the most rewarding option. This disparity in accuracy was more pronounced during times when the expected reward from all options was similar, i.e., no unambiguous good option. To investigate this disparity, we introduced a reward-oblivious model, which was trained to predict human decisions without information about the rewards obtained from each option. This model captured decision-sequence patterns made by participants (e.g., a-b-c-d). In a series of experimental offline simulations of all models we found that the general model was in line with a reward-oriented model’s predictions when one option was clearly better than the others.However, when options’ expected rewards were similar to each other, it was in-line with the reward-oblivious model’s pattern completion predictions. These results indicate the contribution of predictable but task-irrelevant decision patterns to human decisions, especially when task-relevant choices are not immediately apparent. Importantly, we demonstrate how theory-driven cognitive models can be used to characterise the operation of DNNs, making them a useful explanatory tool in scientific investigation.Author SummaryDeep neural networks (DNN) models are an extremely useful tool across multiple domains, and specifically for performing tasks that mimic and predict human behaviour. However, due to their opaque nature and high level of complexity, their ability to explain human behaviour is limited. Here we used DNN models to uncover hitherto overlooked aspects of human decision making, i.e., their reliance on predictable patterns for exploration. For this purpose, we trained a DNN model to predict human choices in a decision-making task. We then characterised this data-driven model using explicit, theory-driven cognitive models, in a set of offline experimental simulations. This relationship between explicit and data-driven approaches, where high-capacity models are used to explore beyond the scope of established models and theory-driven models are used to explain and characterise these new grounds, make DNN models a powerful scientific tool.


2021 ◽  
Vol 11 (12) ◽  
pp. 5344
Author(s):  
Jwalin Bhatt ◽  
Khurram Azeem Hashmi ◽  
Muhammad Zeshan Afzal ◽  
Didier Stricker

In any document, graphical elements like tables, figures, and formulas contain essential information. The processing and interpretation of such information require specialized algorithms. Off-the-shelf OCR components cannot process this information reliably. Therefore, an essential step in document analysis pipelines is to detect these graphical components. It leads to a high-level conceptual understanding of the documents that make the digitization of documents viable. Since the advent of deep learning, deep learning-based object detection performance has improved many folds. This work outlines and summarizes the deep learning approaches for detecting graphical page objects in document images. Therefore, we discuss the most relevant deep learning-based approaches and state-of-the-art graphical page object detection in document images. This work provides a comprehensive understanding of the current state-of-the-art and related challenges. Furthermore, we discuss leading datasets along with the quantitative evaluation. Moreover, it discusses briefly the promising directions that can be utilized for further improvements.


Object detection has boomed in areas like image processing in accordance with the unparalleled development of CNN (Convolutional Neural Networks) over the last decade. The CNN family which includes R-CNN has advanced to much faster versions like Fast-RCNN which have mean average precision(Map) of up to 76.4 but their frames per second(fps) still remain between 5 to 18 and that is comparatively moderate to problem-solving time. Therefore, there is an urgent need to increase speed in the advancements of object detection. In accordance with the broad initiation of CNN and its features, this paper discusses YOLO (You only look once), a strong representative of CNN which comes up with an entirely different method of interpreting the task of detecting the objects. YOLO has attained fast speeds with fps of 155 and map of about 78.6, thereby surpassing the performances of other CNN versions appreciably. Furthermore, in comparison with the latest advancements, YOLOv2 attains an outstanding trade-off between accuracy and speed and also as a detector possessing powerful generalization capabilities of representing an entire image


2019 ◽  
Vol 0 (9/2019) ◽  
pp. 13-18
Author(s):  
Karol Antczak

The paper discusses regularization properties of artificial data for deep learning. Artificial datasets allow to train neural networks in the case of a real data shortage. It is demonstrated that the artificial data generation process, described as injecting noise to high-level features, bears several similarities to existing regularization methods for deep neural networks. One can treat this property of artificial data as a kind of “deep” regularization. It is thus possible to regularize hidden layers of the network by generating the training data in a certain way.


Author(s):  
Hoseong Kim ◽  
Jaeguk Hyun ◽  
Hyunjung Yoo ◽  
Chunho Kim ◽  
Hyunho Jeon

Recently, infrared object detection(IOD) has been extensively studied due to the rapid growth of deep neural networks(DNN). Adversarial attacks using imperceptible perturbation can dramatically deteriorate the performance of DNN. However, most adversarial attack works are focused on visible image recognition(VIR), and there are few methods for IOD. We propose deep learning-based adversarial attacks for IOD by expanding several state-of-the-art adversarial attacks for VIR. We effectively validate our claim through comprehensive experiments on two challenging IOD datasets, including FLIR and MSOD.


2020 ◽  
Vol 34 (07) ◽  
pp. 11450-11457 ◽  
Author(s):  
Yaoyi Li ◽  
Hongtao Lu

Over the last few years, deep learning based approaches have achieved outstanding improvements in natural image matting. Many of these methods can generate visually plausible alpha estimations, but typically yield blurry structures or textures in the semitransparent area. This is due to the local ambiguity of transparent objects. One possible solution is to leverage the far-surrounding information to estimate the local opacity. Traditional affinity-based methods often suffer from the high computational complexity, which are not suitable for high resolution alpha estimation. Inspired by affinity-based method and the successes of contextual attention in inpainting, we develop a novel end-to-end approach for natural image matting with a guided contextual attention module, which is specifically designed for image matting. Guided contextual attention module directly propagates high-level opacity information globally based on the learned low-level affinity. The proposed method can mimic information flow of affinity-based methods and utilize rich features learned by deep neural networks simultaneously. Experiment results on Composition-1k testing set and alphamatting.com benchmark dataset demonstrate that our method outperforms state-of-the-art approaches in natural image matting. Code and models are available at https://github.com/Yaoyi-Li/GCA-Matting.


Author(s):  
Lyudmila N. Tuzova ◽  
Dmitry V. Tuzoff ◽  
Sergey I. Nikolenko ◽  
Alexey S. Krasnov

In the recent decade, deep neural networks have enjoyed rapid development in various domains, including medicine. Convolutional neural networks (CNNs), deep neural network structures commonly used for image interpretation, brought the breakthrough in computer vision and became state-of-the-art techniques for various image recognition tasks, such as image classification, object detection, and semantic segmentation. In this chapter, the authors provide an overview of deep learning algorithms and review available literature for dental image analysis with methods based on CNNs. The present study is focused on the problems of landmarks and teeth detection and classification, as these tasks comprise an essential part of dental image interpretation both in clinical dentistry and in human identification systems based on the dental biometrical information.


Author(s):  
Xiayu Chen ◽  
Ming Zhou ◽  
Zhengxin Gong ◽  
Wei Xu ◽  
Xingyu Liu ◽  
...  

ABSTRACTDeep neural networks (DNNs) have attained human-level performance on dozens of challenging tasks through an end-to-end deep learning strategy. Deep learning gives rise to data representations with multiple levels of abstraction; however, it does not explicitly provide any insights into the internal operations of DNNs. Its success appeals to neuroscientists not only to apply DNNs to model biological neural systems, but also to adopt concepts and methods from cognitive neuroscience to understand the internal representations of DNNs. Although general deep learning frameworks such as PyTorch and TensorFlow could be used to allow such cross-disciplinary studies, the use of these frameworks typically requires high-level programming expertise and comprehensive mathematical knowledge. A toolbox specifically designed for cognitive neuroscientists to map DNNs and brains is urgently needed. Here, we present DNNBrain, a Python-based toolbox designed for exploring internal representations in both DNNs and the brain. By integrating DNN software packages and well-established brain imaging tools, DNNBrain provides application programming and command line interfaces for a variety of research scenarios, such as extracting DNN activation, probing DNN representations, mapping DNN representations onto the brain, and visualizing DNN representations. We expect that our toolbox will accelerate scientific research in applying DNNs to model biological neural systems and utilizing paradigms of cognitive neuroscience to unveil the black box of DNNs.


Sign in / Sign up

Export Citation Format

Share Document