scholarly journals Simplifying of DLT Equations for a Single Digital Image and Its Application in Architectural Façades Documentation

Survey of architectural façades to obtain elevation drawings is an essential, especially in case of maintenance, restoration, ...etc. On the other hand, the rapid progress of the obtained image size captured by digital cameras opens new areas for the captured images to be used in photogrammetry. One of these new areas is the use of a single digital image for surveying and recording of architectural façades. So, the main objective of the current research is to develop a computer algorithm using least squares adjustment method for studying the practical visibility, applicability, and accuracy of using a single digital image captured by a digital camera in surveying architectural façades. To achieve the above-mentioned goal, simplified formulas obtained from collinearity condition, the basis of the Direct Linear Transformation model (DLT), to suit the architectural façades conditions, which is the façade lies in one vertical plane. The obtained formulas showed that eight transformation parameters are required (needed) between the architectural façade and the captured image. Hence, the eight parameters can be computed using four common points or more. So, two field experiments were made on two architectural façades to test the practical visibility, applicability, and accuracy of the supposed technique. The obtained results proved the success of the supposed technique and its related computer algorithm in the survey and the record of the vertical architectural façades.

2020 ◽  
Vol 13 (11) ◽  
pp. 25
Author(s):  
C. B. M. Farias ◽  
A. S. A. S. Correa ◽  
M. C. M. Silva ◽  
R. R. Cruz ◽  
L. P. N. Ramos ◽  
...  

Genipa americana L. is a tree species with socioeconomic and environmental potential. Popularly known as jenipapeiro, it is used in the production of wood and its fruits are considered one of the main recipes of small farmers, being also used in the recovery of degraded areas. The work aimed to evaluate and compare the traditional method (Pachymeter) and digital image obtained through a photographic camera to determine the height of the plant, height of insertion of the first leaf and diameter of the neck of American genipa. The study was carried out in the Flora-action-Seedlings nursery and in the Didactics II laboratory. In the nursery, 30 seedlings were analyzed randomly. In the same numerical sequence were the seedlings on the phenotyping platform where the images were captured, with a Sony Gps Hd Avchd progressive digital camera, attached at a height of 50 cm. The diameter of the stem (CD), the total height of the plant and the height of insertion of the last leaf were measured using the free ImageJ software, using images from digital cameras. Statistical analyzes were performed with the aid of the Sigmaplot program and analyzed using descriptive statistics to estimate measures of central tendency (mean) and dispersion (standard deviation and coefficient of variation). Through the results, it is possible to observe the high proportion of the two methodologies, being validated both for the traditional methods (caliper) and for the innovative method (digital image). Where the coefficients were high, showing the accuracy of the methods. Thus, it indicates that the digital camera can be very useful to measure the total height of a plant and can also be indicated for trees, shrubs and others. According to the data obtained, it can be said that there is precision between the methodologies used with manual measurement and digital images, using the ImageJ software, and its use is recommended for the analysis of the morphological characteristics of the species Genipa americana L.


2012 ◽  
Vol 31 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Birutė Ruzgienė

During the last year amateur low‐cost digital cameras are increasingly expected to contribute to the digital photogrammetry. An important aspect of the suitability of these cameras is determination of their geometrical instability. In order to evaluate amateur digital camera performance, small format, low resolution and low-cost CCD camera have been investigated in two considerations: determining inner orientation parameters at different time and estimating accuracy in test field experiments. The calibration results demonstrate the poor stability of such a digital camera. As a result of the instability, amateur cameras have limited possibilities in close-range photogrammetry. However, the investigated camera under certain limited accuracy requirements can be used for low-accuracy photogrammetric application.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1218
Author(s):  
Aleksandr Kulchitskiy

The article proposes a solution to the problem of increasing the accuracy of determining the main shaping dimensions of axisymmetric parts through a control system that implements the optical method of spatial resolution. The influence of the projection error of a passive optical system for controlling the geometric parameters of bodies of revolution from the image of its sections, obtained by a digital camera with non-telecentric optics, on the measurement accuracy is shown. Analytical dependencies are derived that describe the features of the transmission of measuring information of a system with non-telecentric optics in order to estimate the projection error. On the basis of the obtained dependences, a method for compensating the projection error of the systems for controlling the geometry of the main shaping surfaces of bodies of revolution has been developed, which makes it possible to increase the accuracy of determining dimensions when using digital cameras with a resolution of 5 megapixels or more, equipped with short-focus lenses. The possibility of implementing the proposed technique is confirmed by the results of experimental studies.


2016 ◽  
Vol 56 (12) ◽  
pp. 2060 ◽  
Author(s):  
Serkan Ozkaya ◽  
Wojciech Neja ◽  
Sylwia Krezel-Czopek ◽  
Adam Oler

The objective of this study was to predict bodyweight and estimate body measurements of Limousin cattle using digital image analysis (DIA). Body measurements including body length, wither height, chest depth, and hip height of cattle were determined both manually (by measurements stick) and by using DIA. Body area was determined by using DIA. The images of Limousin cattle were taken while cattle were standing in a squeeze chute by a digital camera and analysed by image analysis software to obtain body measurements of each animal. While comparing the actual and predicted body measurements, the accuracy was determined as 98% for wither height, 97% for hip height, 94% for chest depth and 90.6% for body length. Regression analysis between body area and bodyweight yielded an equation with R2 of 61.5%. The regression equation, which included all body traits, resulted in an R2 value of 88.7%. The results indicated that DIA can be used for accurate prediction of body measurements and bodyweight of Limousin cattle.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4084
Author(s):  
Xin-Yu Zhao ◽  
Li-Jing Li ◽  
Lei Cao ◽  
Ming-Jie Sun

Digital cameras obtain color information of the scene using a chromatic filter, usually a Bayer filter, overlaid on a pixelated detector. However, the periodic arrangement of both the filter array and the detector array introduces frequency aliasing in sampling and color misregistration during demosaicking process which causes degradation of image quality. Inspired by the biological structure of the avian retinas, we developed a chromatic LED array which has a geometric arrangement of multi-hyperuniformity, which exhibits an irregularity on small-length scales but a quasi-uniformity on large scales, to suppress frequency aliasing and color misregistration in full color image retrieval. Experiments were performed with a single-pixel imaging system using the multi-hyperuniform chromatic LED array to provide structured illumination, and 208 fps frame rate was achieved at 32 × 32 pixel resolution. By comparing the experimental results with the images captured with a conventional digital camera, it has been demonstrated that the proposed imaging system forms images with less chromatic moiré patterns and color misregistration artifacts. The concept proposed verified here could provide insights for the design and the manufacturing of future bionic imaging sensors.


2021 ◽  
Vol 2021 (29) ◽  
pp. 1-6
Author(s):  
Yuteng Zhu ◽  
Graham D. Finlayson

Previously improved color accuracy of a given digital camera was achieved by carefully designing the spectral transmittance of a color filter to be placed in front of the camera. Specifically, the filter is designed in a way that the spectral sensitivities of the camera after filtering are approximately linearly related to the color matching functions (or tristimulus values) of the human visual system. To avoid filters that absorbed too much light, the optimization could incorporate a minimum per wavelength transmittance constraint. In this paper, we change the optimization so that the overall filter transmittance is bounded, i.e. we solve for the filter that (for a uniform white light) transmits (say) 50% of the light. Experiments demonstrate that these filters continue to solve the color correction problem (they make cameras much more colorimetric). Significantly, the optimal filters by restraining the average transmittance can deliver a further 10% improvement in terms of color accuracy compared to the prior art of bounding the low transmittance.


Author(s):  
Michael D. Kutzer ◽  
Levi D. DeVries ◽  
Cooper D. Blas

Additive manufacturing (AM) technologies have become almost universal in concept development, prototyping, and education. Advances in materials and methods continue to extend this technology to small batch and complex part manufacturing for the public and private sectors. Despite the growing popularity of digital cameras in AM systems, use of image data for part monitoring is largely unexplored. This paper presents a new method for estimating the 3D internal structure of fused deposition modeling (FDM) processes using image data from a single digital camera. Relative transformations are established using motion capture, and the 3D model is created using knowledge of the deposition path coupled with assumptions about the deposition cross-section. Results show that part geometry can be estimated and visualized using the methods presented in this work.


Sign in / Sign up

Export Citation Format

Share Document