scholarly journals AI Assisted Human Activity Recognition (HAR)

Human Activity Recognition and assisting user on the basis of his context is attracting researchers since decade Researchers are working in the area to increase the accuracy of detection by various means. The challenging issue is to determine the correct supervised classifier for the detection purpose. This paper intent to examine the methodology used to recognize HAR and the impact of classifiers practiced in training and Testing. We have also tried to identify the suitable supervised machine learning model for HAR. Data of 30 Users with 561 features belonging to accelerometer and gyroscope sensor of smartphone from UCI repository is used for evaluation purpose. Nine different supervised machine learning Models are trained and tested on the dataset. The result concludes that HAR is a process which depends upon the classifiers used. It also conclude that out of 9 different Machine learning models ANN performs well and after that SVM, kNN, Random Forest and Extra Tree are equally good models for the purpose of HAR with Accuracy and execution time as the performance evaluation metric.

2020 ◽  
Author(s):  
Ivan Miguel Pires ◽  
Faisal Hussain ◽  
Nuno M. Garcia ◽  
Eftim Zdravevski

Abstract The tremendous applications of human activity recognition are surging its span from health monitoring systems to virtual reality applications. Thus, the automatic recognition of daily life activities has become significant for numerous applications. In recent years, many datasets have been proposed to train the machine learning models for efficient monitoring and recognition of human daily living activities. However, the performance of machine learning models in activity recognition is crucially affected when there are incomplete activities in a dataset, i.e., having missing samples in dataset captures. Therefore, in this work, we propose a methodology for extrapolating the missing samples of a dataset to better recognize the human daily living activities. The proposed method efficiently pre-processes the data captures and utilizes the k-Nearest Neighbors (KNN) imputation technique to extrapolate the missing samples in dataset captures. The proposed methodology elegantly extrapolated a similar pattern of activities as they were in the real dataset.


2021 ◽  
Vol 19 (1) ◽  
pp. 953-971
Author(s):  
Songfeng Liu ◽  
◽  
Jinyan Wang ◽  
Wenliang Zhang ◽  

<abstract><p>User data usually exists in the organization or own local equipment in the form of data island. It is difficult to collect these data to train better machine learning models because of the General Data Protection Regulation (GDPR) and other laws. The emergence of federated learning enables users to jointly train machine learning models without exposing the original data. Due to the fast training speed and high accuracy of random forest, it has been applied to federated learning among several data institutions. However, for human activity recognition task scenarios, the unified model cannot provide users with personalized services. In this paper, we propose a privacy-protected federated personalized random forest framework, which considers to solve the personalized application of federated random forest in the activity recognition task. According to the characteristics of the activity recognition data, the locality sensitive hashing is used to calculate the similarity of users. Users only train with similar users instead of all users and the model is incrementally selected using the characteristics of ensemble learning, so as to train the model in a personalized way. At the same time, user privacy is protected through differential privacy during the training stage. We conduct experiments on commonly used human activity recognition datasets to analyze the effectiveness of our model.</p></abstract>


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1858 ◽  
Author(s):  
Dionicio Neira-Rodado ◽  
Chris Nugent ◽  
Ian Cleland ◽  
Javier Velasquez ◽  
Amelec Viloria

Human activity recognition (HAR) is a popular field of study. The outcomes of the projects in this area have the potential to impact on the quality of life of people with conditions such as dementia. HAR is focused primarily on applying machine learning classifiers on data from low level sensors such as accelerometers. The performance of these classifiers can be improved through an adequate training process. In order to improve the training process, multivariate outlier detection was used in order to improve the quality of data in the training set and, subsequently, performance of the classifier. The impact of the technique was evaluated with KNN and random forest (RF) classifiers. In the case of KNN, the performance of the classifier was improved from 55.9% to 63.59%.


2021 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
Aristotelis C. Tagarakis ◽  
Lefteris Benos ◽  
Eirini Aivazidou ◽  
Athanasios Anagnostis ◽  
Dimitrios Kateris ◽  
...  

To establish a safe human–robot interaction in collaborative agricultural environments, a field experiment was performed, acquiring data from wearable sensors placed at five different body locations on 20 participants. The human–robot collaborative task presented in this study involved six well-defined continuous sub-activities, which were executed under several variants to capture, as much as possible, the different ways in which someone can carry out certain synergistic actions in the field. The obtained dataset was made publicly accessible, thus enabling future meta-studies for machine learning models focusing on human activity recognition, and ergonomics aiming to identify the main risk factors for possible injuries.


2019 ◽  
Vol 13 (13) ◽  
pp. 2572-2578 ◽  
Author(s):  
Sumaira Ghazal ◽  
Umar S. Khan ◽  
Muhammad Mubasher Saleem ◽  
Nasir Rashid ◽  
Javaid Iqbal

2020 ◽  
Vol 28 (2) ◽  
pp. 253-265 ◽  
Author(s):  
Gabriela Bitencourt-Ferreira ◽  
Amauri Duarte da Silva ◽  
Walter Filgueira de Azevedo

Background: The elucidation of the structure of cyclin-dependent kinase 2 (CDK2) made it possible to develop targeted scoring functions for virtual screening aimed to identify new inhibitors for this enzyme. CDK2 is a protein target for the development of drugs intended to modulate cellcycle progression and control. Such drugs have potential anticancer activities. Objective: Our goal here is to review recent applications of machine learning methods to predict ligand- binding affinity for protein targets. To assess the predictive performance of classical scoring functions and targeted scoring functions, we focused our analysis on CDK2 structures. Methods: We have experimental structural data for hundreds of binary complexes of CDK2 with different ligands, many of them with inhibition constant information. We investigate here computational methods to calculate the binding affinity of CDK2 through classical scoring functions and machine- learning models. Results: Analysis of the predictive performance of classical scoring functions available in docking programs such as Molegro Virtual Docker, AutoDock4, and Autodock Vina indicated that these methods failed to predict binding affinity with significant correlation with experimental data. Targeted scoring functions developed through supervised machine learning techniques showed a significant correlation with experimental data. Conclusion: Here, we described the application of supervised machine learning techniques to generate a scoring function to predict binding affinity. Machine learning models showed superior predictive performance when compared with classical scoring functions. Analysis of the computational models obtained through machine learning could capture essential structural features responsible for binding affinity against CDK2.


Sign in / Sign up

Export Citation Format

Share Document