scholarly journals Exoneration of Waste Water with Solar Energy

— Water is the most important aspect of life on earth. Despite its abundant availability, small percentage be able to use for the purpose of drinking (about 1%). Solar water exoneration comes in the form of a harmless and promising contrivance that purifies water which use a source of renewable solar energy. By rising the collective cause of solar radiation, the competence of solar water exoneration equipment can be increased, which is a mutual outcome of solar radiation, and provides additional heat by solar water preheating system. The main purpose of this effort is to disinfect the water from wastewater using cosmological energy with the course of action of embodiment. This system is proposed to be experimentally created for this purpose.

Solar Energy ◽  
2006 ◽  
Author(s):  
Peter E. Zemke ◽  
Byard D. Wood

Hybrid solar lighting (HSL) has been successfully demonstrated as a means of collecting sunlight and transferring it through optical fibers into a building. The collected solar energy is primarily intended for illumination purposes. However, this technology may have an application in solar water heating. For a traditional solar water heating system, energy is required to pump the water to the roof and collected solar energy is lost to the environment through the collector and plumbing. If such a system is to be used in climates where the temperature falls below freezing, complexity is added resulting in lower system efficiencies. If, rather than pumping water to the roof to absorb solar energy, the solar radiation is “piped” into the hot water store, a solar water heating system may be much less complex and potentially more efficient. HSL technology can be used to collect solar radiation and transport it through optical fibers into a hot water store. Since the water remains in the tank, it is not exposed to freezing temperatures and heat loss through plumbing. The efficiency of the system would not be dependent on the outside temperature or the temperature of the water as traditional systems are, but solely on the efficiency in which solar radiation is transferred into the water. This paper will outline the major advantages of using HSL technology for solar water heating over traditional systems. The approximate efficiencies of a flat-plate collector, 2-axis solar tracking collector, and a system using HSL technology are compared using F-Chart for locations in the Southwestern and Northeastern United States. It is shown that improvements in efficiency are obtained using HSL technology if the system is capable of collecting and transferring the visible and infrared spectrum of solar radiation.


2018 ◽  
Vol 40 ◽  
pp. 36
Author(s):  
Raidel Báez Prieto ◽  
Francisco Henrique de Oliveira

Solar radiation is of utmost importance for life on earth and for carrying out different human and natural activities, such as the studies carried out for agriculture. The objective of this work is to calculate, from formulations, the incidence of solar radiation. Solar energy will be calculated in Havana City, Cuba, during the equinoxes and solstices, as well as the variation that exists during the different seasons of the year. A study was carried out every 3 hours: 6am, 9am, 12m, 3pm and 6pm, (average solar time) creating a table with real values of this energy, obtaining maps of light and shadow planes.


2020 ◽  
Vol 67 (1) ◽  
pp. 142-147
Author(s):  
Alina A. Aleksandrova ◽  
Maksim S. Zhuzhin ◽  
Yuliya M. Dulepova

Energy saving today is an integral part of the development strategy of agricultural organizations. Considerable attention is paid to the modernization and automation of technological processes in agricultural enterprises, which can improve the quality of work and reduce the cost of production. The direction of modernization is to reduce the consumption of electric energy by improving the water treatment system in livestock complexes. (Research purpose) The research purpose is to determine the potential of solar energy used in the Nizhny Novgorod region and to determine the possibility of its use for water heating in livestock complexes and to consider the cost-effectiveness of using a device to heat water through solar energy. (Materials and methods) Authors used an improved algorithm of Pixer and Laszlo, applied in the NASA project «Surface meteorology and Energy», which allows to calculate the optimal angle of inclination of the device for heating water. (Results and discussion) Designed a mock-up of a livestock complex with a solar water heater installed on the roof, protected by patent for invention No. 2672656. A mathematical model was designed experimentally to predict the results of the plant operation in non-described modes. (Conclusions) The article reveales the optimal capacity of the circulation pump. Authors have created a mathematical model of the device that allows to predict the water heating in a certain period of time. The article presents the calculations on the energy and economic efficiency of using a solar water heater. An electric energy saving of about 30 percent, in the economic equivalent of 35 percent.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea de Almeida Brito ◽  
Heráclio Alves de Araújo ◽  
Gilney Figueira Zebende

AbstractDue to the importance of generating energy sustainably, with the Sun being a large solar power plant for the Earth, we study the cross-correlations between the main meteorological variables (global solar radiation, air temperature, and relative air humidity) from a global cross-correlation perspective to efficiently capture solar energy. This is done initially between pairs of these variables, with the Detrended Cross-Correlation Coefficient, ρDCCA, and subsequently with the recently developed Multiple Detrended Cross-Correlation Coefficient, $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2. We use the hourly data from three meteorological stations of the Brazilian Institute of Meteorology located in the state of Bahia (Brazil). Initially, with the original data, we set up a color map for each variable to show the time dynamics. After, ρDCCA was calculated, thus obtaining a positive value between the global solar radiation and air temperature, and a negative value between the global solar radiation and air relative humidity, for all time scales. Finally, for the first time, was applied $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2 to analyze cross-correlations between three meteorological variables at the same time. On taking the global radiation as the dependent variable, and assuming that $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}={\bf{1}}$$DMCx2=1 (which varies from 0 to 1) is the ideal value for the capture of solar energy, our analysis finds some patterns (differences) involving these meteorological stations with a high intensity of annual solar radiation.


Author(s):  
Cheng Tian ◽  
Chengcheng Li ◽  
Delun Chen ◽  
Yifan Li ◽  
LEI XING ◽  
...  

Designing low-cost and efficient evaporation system to maximize solar energy utilization is of great importance for the emerging solar water purification technologies. Herein, we demonstrate a universal sandwich hydrogel by...


2019 ◽  
Vol 91 ◽  
pp. 05006
Author(s):  
Rami Qaoud ◽  
Alkama Djamal

The urban fabric of the desert cities is based on the principle of reducing the impact of urban canyons on direct solar radiation. Here comes this research, which is based on a comparative study of the periods of direct solarisation and values of the solar energy of urban canyons via two urban fabrics that have different building densities, where the ratio between L/W is different. In order to obtain the real values of the solar energy (thermal, lighting), the test field was examined every two hours, each three consecutive days. The measurement stations are positioned by the three types of the relationship between L/W, (L≥2w, L=w, L≤0.5w). According to the results, we noticed and recorded the difference in the periods of direct solarization between the types of urban engineering canyons, reaching 6 hours a day, the difference in thermal values of air, reaching 4 °C, and the difference in periods of direct natural lighting, reaching 6 hours. It should be noted that the role of the relationship between L/W is to protect the urban canyons by reducing the impact of direct solar radiation on urban canyons, providing longer hours of shading, and reducing solar energy levels (thermal, lighting) at the urban canyons. This research is classified under the research axis (the studies of external spaces in the urban environment according to the bioclimatic approach and geographic approach). But this research aims to focus on the tracking and studying the distribution of the solar radiation - thermal radiation and lighting radiation - in different types of street canyons by comparing the study of the direct solarization periods of each type and the quantity of solar energy collected during the solarization periods.


Parasitology ◽  
2009 ◽  
Vol 136 (4) ◽  
pp. 393-399 ◽  
Author(s):  
H. GÓMEZ-COUSO ◽  
M. FONTÁN-SAINZ ◽  
J. FERNÁNDEZ-ALONSO ◽  
E. ARES-MAZÁS

SUMMARYSpecies belonging to the generaCryptosporidiumare recognized as waterborne pathogens. Solar water disinfection (SODIS) is a simple method that involves the use of solar radiation to destroy pathogenic microorganisms that cause waterborne diseases. A notable increase in water temperature and the existence of a large number of empty or partially excysted (i.e. unviable) oocysts have been observed in previous SODIS studies with water experimentally contaminated withCryptosporidium parvumoocysts under field conditions. The aim of the present study was to evaluate the effect of the temperatures that can be reached during exposure of water samples to natural sunlight (37–50°C), on the excystation ofC. parvumin the absence of other stimuli. In samples exposed to 40–48°C, a gradual increase in the percentage of excystation was observed as the time of exposure increased and a maximum of 53·81% of excystation was obtained on exposure of the water to a temperature of 46°C for 12 h (versus8·80% initial isolate). Under such conditions, the oocyst infectivity evaluated in a neonatal murine model decreased statistically with respect to the initial isolate (19·38%versus100%). The results demonstrate the important effect of the temperature on the excystation ofC. parvumand therefore on its viability and infectivity.


2011 ◽  
Vol 301-303 ◽  
pp. 373-376
Author(s):  
Ting Jun Li ◽  
Qin Xu ◽  
Jian Cun Ren ◽  
Bing Zhi Huang ◽  
Ming Bo Zhu

With environmental protection, energy saving awareness has enhanced, the use of solar energy has become a trend. Designing a large solar water heater automatic system, which adapts for heating and bathing. It introduces the system’s form, and the study of software and hardware. The system achieves a complementarily to the light, heat and electricity, and achieves the measurement, display of temperature and water.


Sign in / Sign up

Export Citation Format

Share Document