scholarly journals Simulation of Wave Propagation in Waveguide Tee Junctions

In order to understand the behaviour of any microwave component, knowledge of electromagnetic (EM) field distribution inside the component is necessary. In this paper simulation of wave propagation in waveguide tees at X- band is presented in dominant mode. Pattern of electric field from front view, side view, and front and top view of magnetic field for dominant mode in rectangular waveguide is presented. Configuration of electric, magnetic field and power distribution at different time instants in microwave tees is explained. Power distribution and isolation property in E-H plane tee are also described.

1966 ◽  
Vol 62 (3) ◽  
pp. 541-545 ◽  
Author(s):  
C. M. Purushothama

AbstractIt has been shown that uncoupled surface waves of SH type can be propagated without any dispersion in an electrically conducting semi-infinite elastic medium provided a uniform magnetic field acts non-aligned to the direction of wave propagation. In general, the velocity of propagation will be slightly greater than that of plane shear waves in the medium.


1982 ◽  
Vol 28 (1) ◽  
pp. 93-101
Author(s):  
Sanjay Kumar Ghosh

Starting from the two-fluid model hydrodynamic equations, a dispersion relation is obtained for wave propagation through a two-temperature plasma perpendicular to the direction of the spatially uniform external magnetic field B0cosω0t and several excitation conditions are deduced.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2616
Author(s):  
Ben A. Witvliet ◽  
Rosa M. Alsina-Pagès ◽  
Erik van Maanen ◽  
Geert Jan Laanstra

This article describes the design and validation of deployable low-power probes and sensors to investigate the influence of the ionosphere and the Earth’s magnetic field on radio wave propagation below the plasma frequency of the ionosphere, known as Near Vertical Incidence Skywave (NVIS) propagation. The propagation of waves that are bent downward by the ionosphere is dominated by a bi-refractive mechanism called ‘magneto-ionic propagation’. The polarization of both downward waves depends on the spatial angle between the Earth’s magnetic field and the direction of propagation of the radio wave. The probes and sensors described in this article are needed to simultaneously investigate signal fading and polarization dynamics on six radio wave propagation paths. The 1-Watt probes realize a 57 dB signal-to-noise ratio. The probe polarization is controlled using direct digital synthesis and the cross-polarization is 25–35 dB. The intermodulation-free dynamic range of the sensor exceeds 100 dB. Measurement speed is 3000 samples/second. This publication covers design, practical realization and deployment issues. Research performed with these devices will be shared in subsequent publications.


2010 ◽  
Vol 77 (4) ◽  
pp. 537-545 ◽  
Author(s):  
A. B. ALEXANDER ◽  
C. T. RAYNOR ◽  
D. L. WIGGINS ◽  
M. K. ROBINSON ◽  
C. C. AKPOVO ◽  
...  

AbstractWhen the krypton plasma in a DC glow discharge tube is exposed to an axial magnetic field, the turbulent energy and the characteristic dominant mode in the turbulent fluctuations are systematically and unexpectedly reduced with increasing magnetic field strength. When the index measuring the rate of transfer of energy through fluctuation scales is monitored, a lambda-like dependence on turbulent energy is routinely observed in all magnetic fields. From this, a critical turbulent energy is identified, which also decreases with increasing magnetic field strength.


2007 ◽  
Vol 3 (S247) ◽  
pp. 78-81
Author(s):  
S. S. Hasan ◽  
O. Steiner ◽  
A. van Ballegooijen

AbstractThe aim of this work is to examine the hypothesis that the wave propagation time in the solar atmosphere can be used to infer the magnetic topography in the chromosphere as suggested by Finsterle et al. (2004). We do this by using an extension of our earlier 2-D MHD work on the interaction of acoustic waves with a flux sheet. It is well known that these waves undergo mode transformation due to the presence of a magnetic field which is particularly effective at the surface of equipartition between the magnetic and thermal energy density, the β = 1 surface. This transformation depends sensitively on the angle between the wave vector and the local field direction. At the β = 1 interface, the wave that enters the flux sheet, (essentially the fast mode) has a higher phase speed than the incident acoustic wave. A time correlation between wave motions in the non-magnetic and magnetic regions could therefore provide a powerful diagnostic for mapping the magnetic field in the chromospheric network.


Sign in / Sign up

Export Citation Format

Share Document