scholarly journals Design and Development of Circular Polarized Conformal Microstrip patch Antenna

This paper presents broadband circular polarized conformal antenna with a square patch for on-board applications. The substrate is located in between patch and the ground. A novel Circular polarized square patch with microstrip feed with two truncated corners with conformal structure is designed. Using a parametric study on the effect of the position of feed, the antenna parameters VSWR bandwidth, half power beam width and polarization of antenna are analysed. Finally fabrication of conformal square patch on 2.2 dialectic substrate and measured results are discussed.

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4398
Author(s):  
Wei-Hua Hui ◽  
Yao Guo ◽  
Xiao-Peng Zhao

A microstrip patch antenna (MPA) loaded with linear-type negative permittivity metamaterials (NPMMs) is designed. The simple linear-type metamaterials have negative permittivity at 1–10 GHz. Four groups of antennas at different frequency bands are simulated in order to study the effect of linear-type NPMMs on MPA. The antennas working at 5.0 GHz are processed and measured. The measured results illustrate that the gain is enhanced by 2.12 dB, the H-plane half-power beam width (HPBW) is converged by 14°, and the effective area is increased by 62.5%. It can be concluded from the simulation and measurements that the linear-type metamaterials loaded on the substrate of MAP can suppress surface waves and increase forward radiation well.


2017 ◽  
Vol 6 (3) ◽  
pp. 1
Author(s):  
R. Nagendra ◽  
T. Venkateswarulu

In this paper, a novel dual band microstrip patch antenna based on composite patch antenna and radiating part. By selecting a suitable offset feed position, it is feasible to provide 50Ω characteristic impedance and thus making better impedance matching. The proposed antenna has been improved broader bandwidth by using RT Duroid substrate. The radiating part is plays a important role in creating a lower operating band (2.45 GHz) in addition to achieve miniaturization. The proposed antenna has to be fabricated with RT / Duroid substrate and dimensions of 19 × 22 × 0.8 mm. The measured -10 dB bandwidth of 200 MHz at 2.45 GHz and 990 MHz at 5.45 GHz, which is quite useful for Industrial, Scientific and Medical (ISM) and WLAN applications. 


Frequenz ◽  
2019 ◽  
Vol 73 (9-10) ◽  
pp. 321-330 ◽  
Author(s):  
Manisha Gupta ◽  
Vinita Mathur ◽  
Arun Kumar ◽  
Virendra Saxena ◽  
Deepak Bhatnagar

Abstract Novel and miniaturized hexagonal Microstrip patch antenna design is presented in this paper. Patch is fractured using Sierpinski and Koch structures to make the antenna applicable for multiband applications. Additionally ground is defected to enhance the bandwidth and further size is reduced. Material FR-4 (εr = 4.4)has been chosen to design proposed antenna and substrate thickness as 1.59 mm. Microstrip feed technique is used as it provides better results. Gain obtained in this case is 5.57 dB, 7.49 dB and 4.02 dB with bandwidth as 606.8 MHz, 507 MHz and 2 GHz at 8.3 GHz, 12.6 GHz and 17.6 GHz resonant frequencies. The antenna is better to other designs in terms of parameters like bandwidth, directivity, polarization, gain, return loss and dimension. The antenna provides application for military appliances. A good concord is obtained in Simulated and measured results.


2018 ◽  
Vol 10 (4) ◽  
pp. 04004-1-04004-4
Author(s):  
S. Bouttout ◽  
◽  
Y. Bentrcia ◽  
S. Benkouda ◽  
T. Fortaki ◽  
...  

2020 ◽  
Vol 17 (2) ◽  
pp. 1469-1473
Author(s):  
Ahmed Jamal Abdullah Al-Gburi ◽  
I. M. Ibrahim ◽  
Z. Zakaria

A rectangular microstrip patch antenna over ultra-wideband with superstrate are designed and analyzed. Four iterations A, B, C, D were designs. Iterations A and B represent the parametric study of the microstrip patch antenna. Iteration C represents Ultrawide band microstrip patch antenna with peak realized gain 4.196 dB at frequency 10.12 GHz, the gain was enhance using superstrate above the microstrip patch antenna as in iteration D, a novel enhancement happens for the whole ultra-wideband frequency band (3.1–10.6 GHz) with highest salient realised gain of 5.3 dB at frequency 10.55 GHz. The proposed antenna gain at iteration D is increased by 26.49%, which is useful for many applications such as satellite communication. Simulation and discussion results of the proposed antenna are present within this paper.


Sign in / Sign up

Export Citation Format

Share Document