scholarly journals Deep Belief Network for Prediction of Rician Fading Channel

In this paper a novel channel prediction scheme is presented for rician fading channel. The channel prediction is done by using a Deep Belief Network (DBN) which is composed of two Restricted Boltzmann Machines (RBMs), this deep learning algorithm can produce fewer predictive errors than echo state networks and other predictive approaches.. Simulation results shows that the DBN channel prediction system has a lower NMSE than the prediction of the echo state network and other conventional prediction methods and the obtained SER gap between the actual CSI and predicted CSI is small.

2021 ◽  
Vol 12 (3) ◽  
pp. 185-207
Author(s):  
Anjali A. Shejul ◽  
Kinage K. S. ◽  
Eswara Reddy B.

Age estimation has been paid great attention in the field of intelligent surveillance, face recognition, biometrics, etc. In contrast to other facial variations, aging variation presents several unique characteristics, which make age estimation very challenging. The overall process of age estimation is performed using three important steps. In the first step, the pre-processing is performed from the input image based on Viola-Jones algorithm to detect the face region. In the second step, feature extraction is done based on three important features such as local transform directional pattern (LTDP), active appearance model (AAM), and the new feature, deep appearance model (Deep AM). After feature extraction, the classification is carried out based on the extracted features using deep belief network (DBN), where the DBN classifier is trained optimally using the proposed learning algorithm named as crow-sine cosine algorithm (CS).


2020 ◽  
pp. 171-177 ◽  
Author(s):  
Zahraa Naser Shahweli

Lung cancer, similar to other cancer types, results from genetic changes. However, it is considered as more threatening due to the spread of the smoking habit, a major risk factor of the disease. Scientists have been collecting and analyzing the biological data for a long time, in attempts to find methods to predict cancer before it occurs. Analysis of these data requires the use of artificial intelligence algorithms and neural network approaches. In this paper, one of the deep neural networks was used, that is the enhancer Deep Belief Network (DBN), which is constructed from two Restricted Boltzmann Machines (RBM). The visible nodes for the first RBM are 13 nodes and 8 nodes in each hidden layer for the two RBMs. The enhancer DBN was trained by Back Propagation Neural Network (BPNN), where the data sets were divided into 6 folds, each is split into three partitions representing the training, validation, and testing. It is worthy to note that the proposed enhancer DBN predicted lung cancer in an acceptable manner, with an average F-measure value of  0. 96 and an average Matthews Correlation Coefficient (MCC) value of 0. 47 for 6 folds.


2010 ◽  
pp. 1741-1752
Author(s):  
A. Chandra ◽  
C. Bose

Simple closed-form solutions for the average error rate of several coherent modulation schemes including square M-QAM, DBPSK and QPSK operating over slow flat Rician fading channel are derived. Starting from a novel unified expression of conditional error probability the error rates are analysed using PDF based approach. The derived end expressions composed of infinite series summations of Gauss hypergeometric function are accurate, free from any numerical integration and general enough, as it encompasses as special situations, some cases of non-diversity and Rayleigh fading. Error probabilities are graphically displayed for the modulation schemes for different values of the Rician parameter K. In addition, to examine the dependence of error rate performance of M-QAM on the constellation size, numerical results are plotted for various values of M. The generality of the analytical results presented offers valuable insight into the performance evaluation over a fading channel in a unified manner.


Sign in / Sign up

Export Citation Format

Share Document