scholarly journals Appropriate Cluster Head Determination Strategy for extending the Wireless Sensor Network’s (WSN’s) Lifetime

WSN is made with immense number of sensor’s which are deployed densely over an unattended area is responsible for taking environmental measurements, process the data and finally transmit the sensed data over a wireless channel to the sink that makes decisions based on these sensor’s readings. It is well known that the energy consumed for transferring one bit of data from individual sensor to sink is equivalent to a large number of arithmetic operations to be performed in a sensor processor. Thus, node clustering have been applied to hierarchical sensor networks with heterogeneity to augment the network existence whereas diminishing the necessary energy consumption. For that reason, Seven Level Balanced Energy Efficient Network Integrated Super Heterogeneous (SL-BEENISH) algorithm was designed and implemented. Simulation outcomes clearly demonstrated that SL-BEENISH attain better in comparison with TDEEC, BEENISH and IBEENISH with more stability period and network duration.

2021 ◽  
Vol 27 (3) ◽  
pp. 225-235
Author(s):  
Xiaotao Ju

This research was conducted to enhance the energy performance of wireless sensor networks (WSN) and improve the performance of end-to-end delay and packet receiving rate of network operation. In this study, the low-energy data collection routing algorithm and adaptive environment sensing method in WSN were mainly examined. The node centrality, energy surplus, and node temperature were calculated for cluster head selection to reduce the energy consumption of nodes and improve the reliability of network data. The research results have shown that the parameter setting guided by the theoretical analysis makes each node selfishly achieve the maximum expected benefit while the whole network runs reliably, and the energy consumption is reduced by the selfishness of the node. As a result, the proposed algorithm can effectively reduce the network energy consumption and increase the network life cycle of wireless sensor networks. It can be seen that the machine learning methods such as support vector machine are used to model and analyze the state of the sensing node, and to obtain more accurate wireless channel availability judgment based on the historical state data, thereby adaptively adjusting the working duty ratio and reducing the invalidity data sent.


2014 ◽  
Vol 626 ◽  
pp. 20-25
Author(s):  
K. Kalaiselvi ◽  
G.R. Suresh

In wireless sensor networks Energy-efficient routing is an important issue due to the limited battery power within the network, Energy consumption is one of the important performance factors. Specifically for the election of cluster head selection and distance between the cluster head node and base station. The main objective of this proposed system is to reduce the energy consumption and prolong the network lifetime. This paper introduces a new clustering algorithm for energy efficient routing based on a cluster head selection


2020 ◽  
Vol 16 (10) ◽  
pp. 155014772096804
Author(s):  
Inam Ul Haq ◽  
Qaisar Javaid ◽  
Zahid Ullah ◽  
Zafar Zaheer ◽  
Mohsin Raza ◽  
...  

Internet of things have emerged enough due to its applications in a wide range of fields such as governance, industry, healthcare, and smart environments (home, smart, cities, and so on). Internet of things–based networks connect smart devices ubiquitously. In such scenario, the role of wireless sensor networks becomes vital in order to enhance the ubiquity of the Internet of things devices with lower cost and easy deployment. The sensor nodes are limited in terms of energy storage, processing, and data storage capabilities, while their radio frequencies are very sensitive to noise and interference. These factors consequently threaten the energy consumption, lifetime, and throughput of network. One way to cope with energy consumption issue is energy harvesting techniques used in wireless sensor network–based Internet of things. However, some recent studies addressed the problems of clustering and routing in energy harvesting wireless sensor networks which either concentrate on energy efficiency or quality of service. There is a need of an adequate approach that can perform efficiently in terms of energy utilization as well as to ensure the quality of service. In this article, a novel protocol named energy-efficient multi-attribute-based clustering scheme (E2-MACH) is proposed which addresses the energy efficiency and communication reliability. It uses selection criteria of reliable cluster head based on a weighted function defined by multiple attributes such as link statistics, neighborhood density, current residual energy, and the rate of energy harvesting of nodes. The consideration of such parameters in cluster head selection helps to preserve the node’s energy and reduce its consumption by sending data over links possessing better signal-to-noise ratio and hence ensure minimum packet loss. The minimized packet loss ratio contributes toward enhanced network throughput, energy consumption, and lifetime with better service availability for Internet of things applications. A set of experiments using network simulator 2 revealed that our proposed approach outperforms the state-of-the-art low-energy adaptive clustering hierarchy and other recent protocols in terms of first-node death, overall energy consumption, and network throughput.


2019 ◽  
Vol 8 (3) ◽  
pp. 3561-3570

In this paper a novel geographical multilayer protocol named Cluster-chain Based Hybrid (CCBH) Protocol is proposed for proper load balancing across the network that enhance the network lifespan and eliminate the energy holes problem. The CCBH protocol divides the network into the multilayer square structure around the sink. Each layer is divided into to the zones in such a way that the zones near to the sink are smaller in size and size of zones increases as the separation from the sink increases. In inner two layers, each zone has a cluster head (CH) and to reduce the load of CH a leader node (LN) is assigned in every zone. LN collects and aggregates the data received from neighboring nodes and sends it to the associated CH. Outer layer zones are larger in size. To reduce the clustering overhead chain strategy is introduced in outer layer zones that ensure lesser energy consumption as compared to clustering. Multi hop communiqué is used, where data is transferred from upper zone’s CH to immediate lower zone’s CH until it reaches to the sink. Simulated tests demonstrate that proposed CCBH protocol shows evident improvement in terms of the network lifetime as compare to LBCN, LEACH, TCAC, and DSBCA protocols


2019 ◽  
Vol 15 (9) ◽  
pp. 155014771987938 ◽  
Author(s):  
Fang Zhu ◽  
Junfang Wei

Wireless sensor networks have drawn tremendous attentions from all fields because of their wide application. Maximizing network lifetime is one of the main problems in wireless sensor networks. This article proposes an energy-efficient routing protocol which adopts unequal clustering technology to solve the hot spots problem and proposes double cluster head strategy to reduce the energy consumption of head nodes in the clusters. In addition, to balance the energy consumption between cluster heads and cluster members, a hybrid cluster head rotation strategy based on time-driven and energy-driven is proposed, which can make the timing of rotation more reasonable and the energy consumption more efficient. Finally, we compare the proposed protocol with LEACH, DEBUC, and UCNPD by simulation experiments. The simulation results prove that our proposed protocol can effectively improve the performance in terms of network lifetime, energy consumption, energy balance, stability, and throughput.


2019 ◽  
Vol 17 (9) ◽  
pp. 680-687
Author(s):  
S. Subaselvi ◽  
T. Manimekalai ◽  
K. Gunaseelan

Big data is one of the emerging technology in Wireless Sensor Networks (WSN). Gathering of data is the biggest challenge for implementing big data in WSN. In WSN, the frequent information communications between the nodes are inevitable. Moreover, the long distance communication between the nodes in the network lead to reduction in the lifetime of the nodes. In order to reduce communication distance between the nodes and to efficiently gather large amount of data. Energy Efficient Recursive Clustering and Gathering for big data in WSN is proposed. In proposed algorithm, the grid area will be divided into zones. The zones are divided by finding the minimum and maximum X and Y from the nodes location and distribution of nodes in the network. In each zone, clusters are formed in recursive manner. After the clusters are formed in recursive manner, for every cluster, the Cluster Administrator are elected based on the maximum energy among the nodes in the cluster. Once the Cluster Administrators are elected, the Cluster Administrator which has the maximum energy in the Zone, will be elected as a Cluster Head. The Cluster Head only send the information for a particular zone. Energy consumption will be reduced as the cluster head only sends the information to the base station, instead of every nodes in the zone. The localization algorithm based on Received Signal Strength Indicator (RSSI) and multi hop routing is performed to reduce end-to-end delay in the network. The simulated results show that the proposed algorithm gathers large amount of data with low energy consumption than the existing algorithm.


Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


2020 ◽  
Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime


Sign in / Sign up

Export Citation Format

Share Document