scholarly journals Electrochemical Performance of Graphene blended NiFe2O4 Composite

Graphene was blended with Nickel ferrite in the form of nanocomposite, which was prepared by solid state synthesis using tartaric acid as an activating agent. The nanocomposite was characterized by XRD, SEM, FTIR and UV Visible spectroscopy. Unlike the other composite materials, the Graphene – Nickel ferrite composite (GNFC) showed high specific reversible capacity, which has been studied by the cyclic voltammeter. The electrochemical impedance studies of GNFC proved that such material can be useful for the anode material of the Li-ion batteries. The fast charge-discharge property may be due to the heteroarchitechure of the GNFC..

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3487
Author(s):  
Ashraf Abdel-Ghany ◽  
Ahmed M. Hashem ◽  
Alain Mauger ◽  
Christian M. Julien

Lithium-rich layered oxides are recognized as promising materials for Li-ion batteries, owing to higher capacity than the currently available commercialized cathode, for their lower cost. However, their voltage decay and cycling instability during the charge/discharge process are problems that need to be solved before their practical application can be envisioned. These problems are mainly associated with a phase transition of the surface layer from the layered structure to the spinel structure. In this paper, we report the AlF3-coating of the Li-rich Co-free layered Li1.2Ni0.2Mn0.6O2 (LLNMO) oxide as an effective strategy to solve these problems. The samples were synthesized via the hydrothermal route that insures a very good crystallization in the layered structure, probed by XRD, energy-dispersive X-ray (EDX) spectroscopy, and Raman spectroscopy. The hydrothermally synthesized samples before and after AlF3 coating are well crystallized in the layered structure with particle sizes of about 180 nm (crystallites of ~65 nm), with high porosity (pore size 5 nm) determined by Brunauer–Emmett–Teller (BET) specific surface area method. Subsequent improvements in discharge capacity are obtained with a ~5-nm thick coating layer. AlF3-coated Li1.2Ni0.2Mn0.6O2 delivers a capacity of 248 mAh g−1 stable over the 100 cycles, and it exhibits a voltage fading rate of 1.40 mV per cycle. According to the analysis from galvanostatic charge-discharge and electrochemical impedance spectroscopy, the electrochemical performance enhancement is discussed and compared with literature data. Post-mortem analysis confirms that the AlF3 coating is a very efficient surface modification to improve the stability of the layered phase of the Li-rich material, at the origin of the significant improvement of the electrochemical properties.


2014 ◽  
Vol 07 (04) ◽  
pp. 1430002 ◽  
Author(s):  
Liu Li ◽  
Kim Seng Lee ◽  
Li Lu

Li -rich layer-structured x Li 2 MnO 3 ⋅ (1 - x) LiMO 2 ( M = Mn , Ni , Co , etc.) materials have attracted much attention due to their extraordinarily high reversible capacity as the cathode material in Li -ion batteries. To better understand the nature of this type of materials, this paper reviews history of development of the Li -rich cathode materials, and provides in-depth study on complicated crystal structures and reaction mechanisms during electrochemical charge/discharge cycling. Despite the fabulous capability at low rate, several drawbacks still gap this type of high-capacity cathode materials from practical applications, for instance the large irreversible capacity loss at first cycle, poor rate capability, severe voltage decay and capacity fade during electrochemical charge/discharge cycling. This review will also address mechanisms for these inferior properties and propose various possible solutions to solve above issues for future utilization of these cathode materials in commercial Li -ion batteries.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7262
Author(s):  
I. Neelakanta Reddy ◽  
Bhargav Akkinepally ◽  
Venkatesu Manjunath ◽  
Gaddam Neelima ◽  
Mogalahalli V. Reddy ◽  
...  

In this study, the facile synthesis of SnO2 quantum dot (QD)-garnished V2O5 nanobelts exhibiting significantly enhanced reversible capacity and outstanding cyclic stability for Li+ storage was achieved. Electrochemical impedance analysis revealed strong charge transfer kinetics related to that of V2O5 nanobelts. The SnO2 QD-garnished V2O5 nanobelts exhibited the highest discharge capacity of ca. 760 mAhg−1 at a density of 441 mAg−1 between the voltage ranges of 0.0 to 3.0 V, while the pristine V2O5 nanobelts samples recorded a discharge capacity of ca. 403 mAhg−1. The high capacity of QD-garnished nanobelts was achieved as an outcome of their huge surface area of 50.49 m2g−1 and improved electronic conductivity. Therefore, the as-presented SnO2 QD-garnished V2O5 nanobelts synthesis strategy could produce an ideal material for application in high-performance Li-ion batteries.


2020 ◽  
Vol 11 (3) ◽  
pp. 364-364
Author(s):  
Maciej Ratynski ◽  
Bartosz Hamankiewicz ◽  
Michał Krajewski ◽  
Maciej Boczar ◽  
Dominika A. Buchberger ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (5) ◽  
pp. 2407-2414 ◽  
Author(s):  
Dan Shao ◽  
Inna Smolianova ◽  
Daoping Tang ◽  
Lingzhi Zhang

Novel core–shell structured Si/S-doped carbon composite with buffering voids prepared by hydrothermal method and followed by carbonization and removal of template layer, exhibiting a reversible capacity of 664 mA h g−1 over 300 cycles.


1999 ◽  
Vol 15 (3) ◽  
pp. 225-229 ◽  
Author(s):  
T. Takamura ◽  
J. Suzuki ◽  
C. Yamada ◽  
K. Sumiya ◽  
K. Sekine

Nanoscale ◽  
2011 ◽  
Vol 3 (10) ◽  
pp. 4389 ◽  
Author(s):  
Baihua Qu ◽  
Hongxing Li ◽  
Ming Zhang ◽  
Lin Mei ◽  
Libao Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document