scholarly journals Effect of Indium Incorporation on the Physical Behavior of ZnS Nanoparticles

In–doped ZnS nanoparticles are synthesized via chemical co-precipitation method using different precursor solutions of zinc acetate (source of Zn2+ ions), sodium sulphide (source of S2- ions), indium sulphate (source of dopant In3+ ions), ammonium hydroxide (works as a complexing agent) and EDTA (as a capping agent). The effect of different concentrations of Indium (0%, 1%, 3%, and 5%) on the structure, morphology, and elemental composition properties of nanoparticles have been studied using different characterization techniques. XRD study shows the formation of cubic structure in the synthesized nanoparticles. The average size of nanoparticles calculated using Debye - Scherrer’s equation is in the range of 5.7–2.4 nm. It has been observed that the size of ZnS nanoparticles decrease with an increase in Indium concentration. SEM micrographs have explored the surface feature of the nanoparticles. It clearly shown that the morphology of spherical nanoparticles is changing with In concentration. The elemental identification and mapping has indicated the homogeneous distribution of Zinc, Sulfur and Indium content in synthesized nanoparticles. FT–IR spectra have recognized the existance of characteristics absorption peaks for In-doped ZnS

2021 ◽  
Author(s):  
Ahmed Alharbi ◽  
Ahmad A. Alluhaybi ◽  
Salwa AlReshaidan ◽  
Hany M. Youssef

Abstract In this work, the spinel nanosized MnFe2O4 (18.14 nm) was facilely synthesized through the co-precipitation method to study the removal of Zn(II) ions from aqueous media. The fabricated MnFe2O4 sample was characterized using VSM, XRD, HR-TEM, EDS, FE-SEM, and FT-IR analyses. The principal XRD peaks, which are ascribed to (4 4 0), (3 3 3), (4 2 2), (4 0 0), (2 2 2), (3 1 1), (2 2 0), and (1 1 1) crystal planes, prove the cubic assembly of nanosized manganese ferrite as shown from JCPDS No. 74-2403. The EDS pattern confirmed that the % Wt of Mn, Fe, and O is 24.12, 48.04, and 28.15, respectively. The FE-SEM image confirmed the cubic nature of the surface of MnFe2O4 nanoparticles which have an average size of 110 nm. The saturation magnetization was 65 emu/g. The impacts of initial pH, concentration of Zn(II) ions, contact time, and temperature on the uptake of Zn(II) ions were accurately investigated. The removal of Zn(II) ions is spontaneous, exothermic, and followed the pseudo-second-order model and the Langmuir isotherm. The maximum adsorption capacity equals 330.03 mg/g.


2015 ◽  
Vol 645-646 ◽  
pp. 1339-1344 ◽  
Author(s):  
Yan Ting Yin ◽  
Qing Hua Chen ◽  
Ting Ting Yan ◽  
Qing Hua Chen

The objective of this study was to develop a novel silica modified large-sized hydroxyapatite whiskers with improved properties for use in bone repair applications. Large-sized whiskers with a mean length of 250μm were obtained by a hydrothermal co-precipitation method at 150°C, 7.5Mpa in high-pressure reactor. Silica modified hydroxyapatite whiskers were prepared by dissolving TEOS in ethanol solution, then sintering with hydroxyapatite. The compositional and morphological properties of prepared whiskers were studied by means of x-ray diffraction (XRD), Fouier transform infrared (FT-IR), scanning electron microscopy (SEM). The results indicated the evidence of nanosilicon dioxide particles on the surface of HAP whiskers. The size of nanosilicon dioxide particles depends on dropping and stirring rate. Hence, this new type of silica modified large-sized hydroxyapatite whiskers is a valuable candidate for biomedical applications.Key words: hydroxyapatite, hydrothermal co-precipitation, surface modified, whiskers


2013 ◽  
Vol 838-841 ◽  
pp. 2306-2309
Author(s):  
Guang Hua Wang ◽  
Kun Chen ◽  
Wen Bing Li ◽  
Dong Wan ◽  
Qin Hu ◽  
...  

Magnetic modified organobentonite (Fe3O4/CTAB–Bent) was synthesized by chemical co-precipitation method in which CTAB–Bent was firstly achieved via ion–exchange.The composite materials have been characterized by powder X–ray diffraction (XRD), Fourier transform infrared spectroscopy (FT–IR) and Scanning electron microscopy (SEM) . The results revealed that basal spacing of bentonite was increased through organic modification and the Fe3O4 particles synthesized which covering the surfaces of bentonite .Compared with natural bentonite, the adsorption capacity of Fe3O4/CTAB–Bent for Orange II was greatly enhanced and can be easily separated from the reaction medium by an external magnetic field after the treatment.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 750 ◽  
Author(s):  
Ali M. A. Al-Najar ◽  
Faris A. J. Al-Doghachi ◽  
Ali A. A. Al-Riyahee ◽  
Yun Hin Taufiq-Yap

Pt,Pd,Ni/MgO, Pt,Pd,Ni/Mg0.97La3+0.03O, Pt,Pd,Ni/Mg0.93La3+0.07O, and Pt,Pd,Ni/Mg0.85La3+0.15O (1% of each of the Ni, Pd, and Pt) catalysts were prepared by a surfactant-assisted co-precipitation method. Samples were characterized by the XRD, XPS, XRF, FT-IR, H2-TPR, TEM, the Brunauer–Emmett–Teller (BET) method, and TGA and were tested for the dry reforming of methane (DRM). TEM and thermal gravimetric analysis (TGA) methods were used to analyze the carbon deposition on spent catalysts after 200 h at 900 °C. At a temperature of 900 °C and a 1:1 CH4:CO2 ratio, the tri-metallic Pt,Pd,Ni/Mg0.85La3+0.15O catalyst with a lanthanum promoter showed a higher conversion of CH4 (85.01%) and CO2 (98.97%) compared to the Ni,Pd,Pt/MgO catalysts in the whole temperature range. The selectivity of H2/CO decreased in the following order: Pt,Pd,Ni/Mg0.85La3+0.15O > Pt,Pd,Ni/Mg0.93La3+0.07O > Pt,Pd,Ni/Mg0.97La3+0.03O > Ni,Pd,Pt/MgO. The results indicated that among the catalysts, the Pt,Pd,Ni/Mg0.85La23+0.15O catalyst exhibited the highest activity, making it the most suitable for the dry reforming of methane reaction.


2019 ◽  
Vol 967 ◽  
pp. 259-266 ◽  
Author(s):  
Muhammad Rizal Fahlepy ◽  
Yuyu Wahyuni ◽  
Muhamma Andhika ◽  
Arini Tiwow Vistarani ◽  
Subaer

This research is about nanoparticles hematite (NPH) synthesized and characterized from natural iron sands using co-precipitation method and its potential applications as extrinsic semiconductor materials type-N. The aims of this study is to determine the process parameters to obtain hematite of high purity degree and to observe its physical characteristics as an extrinsic semiconductor materials type-N. The iron sand was first separated by magnetic technique and then dissolved into HCl solution before conducting the precipitation process. Precipitation was done by dripping ammonium hydroxide (NH4OH). Precipitated powder was dried at 80°C for 2 hours, and then calcined at 500°C, 600°C 700°C for 2 hours respectively. The composition of iron sands, purity degree, hematite mineral grain size, and space group were analyzed by XRF, XRD, FTIR and SEM. The XRF analysis result of raw material, showed that dominant element and composition in the sample is Fe with purity degree is 90.51%. The XRD result before and after precipitation showed Fe3O4 and α-Fe2O3. Fe3O4 purity degree was obtained 85%, and α-Fe2O3 in NPH500, NPH600, NPH700 were 63%, 83%, and 76%, respectively. FTIR spectral showed crystalline hematite characteristics stong band of 472.07 to 559.62 cm-1. SEM image showed the morphology of agglomeration particulates, when the calcinaton temperature increases, the agglomeration will be seperated due to thermal energy. Based on the charaterization results it was found that the natural iron sand synthesized has the potential to be applied as an N-type extrinsic semiconductor material.


2020 ◽  
Vol 835 ◽  
pp. 317-323
Author(s):  
D.A. Rayan ◽  
E.A. Abdel-Mawla ◽  
S.K. Mohamed ◽  
A.A. Mohamed ◽  
Mohamed M. Rashad

Nanocrystalline bismuth ferrite BFO; BiFeO3 and manganese sillenite, BMO; Bi12MnO20 (BMO) powders have been successfully elaborated using a facile co-precipitation approach. The formed materials were examined using X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FE-SEM). Furthermore, the change in the optical properties was performed based on Fourier transform infrared spectroscopy (FT-IR) and UV-visible spectrophotometer. Typical, pure BiFeO3 and Bi12MnO20 phases were detected for the precursors precipitated at pH 10 based on ammonium hydroxide as a base then annealed at 500°C for 2h. Eventually, the optical band gap energy of BFO and BMO using Kubelka–Munk function based on Tauc’s plot was found to be 2.12 and 2.79 eV, respectively.


2016 ◽  
Vol 855 ◽  
pp. 47-53
Author(s):  
Ampa Jimtaisong ◽  
Nisakorn Saewan

Inclusion complex of β-cyclodextrin (β-CD) and Plai (Zingiber cassumunar) oil was prepared using a simple co-precipitation method at β-CD to Plai oil in different ratios. The inclusion complexes were characterized using Fourier transform-infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The FT-IR absorption bands of inclusion complex at 3600-3200 cm-1 were broader and shifted toward lower frequencies compared with that of pure β-CD (3359 cm-1). DSC of the inclusion complexes showed two endothermic peaks shifted to lower temperatures (90-100°C and 295-300°C) compared to that of β-CD. The different physicochemical characteristic could be an indication of an embedded guest molecule in the β-CD cavities in the inclusion complex preparation.


2015 ◽  
Vol 735 ◽  
pp. 177-181
Author(s):  
Ee Ting Wong ◽  
Pei Cheng Teh ◽  
Kian Hwa Chan ◽  
Ani Idris

The magnetic nanoparticles of manganese-doped magnetite (Mn-Fe2O4) were synthesized by the simple co-precipitation method. The stable Mn2+ and Fe3+ salts in the ratio of 1:2 in aqueous solution, were added into the sodium hydroxide solution to form the Mn-Fe2O4 precipitate at temperature of 95°C. The synthesized nanoparticles were then characterized by Fourier Transform-Infrared Spectroscopy (FT-IR) and X-ray diffraction spectroscopy (XRD). It was then entrapped in the PVA-alginate matrix to form the nanophotoadsorbent in beads form. The synthesized nanoparticles embedded bead was characterized by Scanning Electron Microscopy (SEM). The effects of various parameters, such as contact time, pH, nanoparticles dosage were investigated. The control study was also performed to reveal the performance of photo-adsorbent towards the Cu (II) removal under the light and dark conditions. It was found that the removal efficiency of the Cu (II) achieved 97.07% (1.46ppm) which complied to the WHO drinking water standard of less than 1.5ppm after 180 min treatment.


2013 ◽  
Vol 678 ◽  
pp. 163-167 ◽  
Author(s):  
D. Amaranatha Reddy ◽  
G. Murali ◽  
N. Madhusudhana Rao ◽  
R.P. Vijayalakshmi ◽  
B.K. Reddy

Undoped and Cr doped ZnS nanoparticles with Cr concentrations of 3.0 at.% were prepared by a chemical co-precipitation method for the fist time, using 2-Mercaptoethanol as the capping agent and annealed the synthesized particles at 600°C for 3h in air. The effect of annealing on morphological, structural and optical properties of ZnS and ZnS:Cr have been studied and compared with as prepared samples. EDAX measurements confirmed the presence of Cr in the ZnS lattice and it also confirms the conversion of ZnS into ZnO after annealed at 600 0C/3h. Surface morphologies of all samples were characterized using scanning electron microscopy (SEM). XRD spectra of as synthesized nanoparticles of ZnS and ZnS:Cr exhibited cubic phase. After annealing, the cubic phase is transformed into hexagonal phase. The particle sizes of the ZnS:Cr powders were increased from 5 to 30 nm when the powders were annealed at 600°C. A stable blue emission peak at 445 nm is observed from the as prepared samples (pure ZnS and Cr doped ZnS) but annealed at 600 0C the PL peaked at 500 nm for pure ZnS and Cr doped ZnS nanoparticles exhibited PL peak at 500 nm as well as 654 nm. The emission intensity decreased in annealed particles compared to as synthesized samples.


2014 ◽  
Vol 602-603 ◽  
pp. 97-100
Author(s):  
Bing Bing Fan ◽  
Ke Ke Guan ◽  
Hao Chen ◽  
Xiao Xuan Pian ◽  
Chen Yang Wang ◽  
...  

CaO(15%)-ZrO2nano-powders were prepared by microwave pyrolysis in a multi-model chamber at the temperature ranging from 650°C to 800°C, with the precursor processed at different reaction temperature from 0°C to 80°C by chemical co-precipitation method. XRD and SEM techniques were used to characterize the phase transition and micrograph of powders. It is found that the content of m-ZrO2phase decreased with the increasing of reaction temperature and pyrolysis temperature. The high dispersed and superfine nano-powders were obtained at the pyrolysis temperature of 750°C for 20 min at 80°C. And only cubic ZrO2phase were detected in CaO (15%)-ZrO2powders and the average size of the powders is about 41 nm.


Sign in / Sign up

Export Citation Format

Share Document