scholarly journals Effect of La2O3 as a Promoter on the Pt,Pd,Ni/MgO Catalyst in Dry Reforming of Methane Reaction

Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 750 ◽  
Author(s):  
Ali M. A. Al-Najar ◽  
Faris A. J. Al-Doghachi ◽  
Ali A. A. Al-Riyahee ◽  
Yun Hin Taufiq-Yap

Pt,Pd,Ni/MgO, Pt,Pd,Ni/Mg0.97La3+0.03O, Pt,Pd,Ni/Mg0.93La3+0.07O, and Pt,Pd,Ni/Mg0.85La3+0.15O (1% of each of the Ni, Pd, and Pt) catalysts were prepared by a surfactant-assisted co-precipitation method. Samples were characterized by the XRD, XPS, XRF, FT-IR, H2-TPR, TEM, the Brunauer–Emmett–Teller (BET) method, and TGA and were tested for the dry reforming of methane (DRM). TEM and thermal gravimetric analysis (TGA) methods were used to analyze the carbon deposition on spent catalysts after 200 h at 900 °C. At a temperature of 900 °C and a 1:1 CH4:CO2 ratio, the tri-metallic Pt,Pd,Ni/Mg0.85La3+0.15O catalyst with a lanthanum promoter showed a higher conversion of CH4 (85.01%) and CO2 (98.97%) compared to the Ni,Pd,Pt/MgO catalysts in the whole temperature range. The selectivity of H2/CO decreased in the following order: Pt,Pd,Ni/Mg0.85La3+0.15O > Pt,Pd,Ni/Mg0.93La3+0.07O > Pt,Pd,Ni/Mg0.97La3+0.03O > Ni,Pd,Pt/MgO. The results indicated that among the catalysts, the Pt,Pd,Ni/Mg0.85La23+0.15O catalyst exhibited the highest activity, making it the most suitable for the dry reforming of methane reaction.

2021 ◽  
Vol 880 (1) ◽  
pp. 012035
Author(s):  
Z Abdelsadek ◽  
P Chaudhari ◽  
J P Holgado ◽  
F Bali ◽  
D Halliche ◽  
...  

Abstract Co0.67Al0.31 and Co0.14Mg0.54Al0.31 hydrotalcite based catalysts were prepared by a co-precipitation method at a fixed pH=11, exhibiting a suitable hydrotalcite structure to be used as a catalyst in the reaction of the dry reforming of methane (DRM). Calcination at 450 °C provides the best conditions to prepare the most adapted structure and morphology to be later used in the DRM reaction. The samples were characterised by XRD, FTIR, SEM and it was shown that they exhibit a specific surface in the 30-70 g/cm2 and a crystallite size of approximately 20 nm. The results of the TPR analysis showed clearly that CoAl-HT has better catalytic performances than CoMgAl-HT. This result can be explained by the presence of the Co0 for the catalyst CoAl-HTc-R and the total absence in the sample CoMgAl-HTc-R. The solid CoMgAl-HTc-R requires high reduction temperature compared to CoAl-HTc-R due to the strong CoO-MgO interactions.


2015 ◽  
Vol 645-646 ◽  
pp. 1339-1344 ◽  
Author(s):  
Yan Ting Yin ◽  
Qing Hua Chen ◽  
Ting Ting Yan ◽  
Qing Hua Chen

The objective of this study was to develop a novel silica modified large-sized hydroxyapatite whiskers with improved properties for use in bone repair applications. Large-sized whiskers with a mean length of 250μm were obtained by a hydrothermal co-precipitation method at 150°C, 7.5Mpa in high-pressure reactor. Silica modified hydroxyapatite whiskers were prepared by dissolving TEOS in ethanol solution, then sintering with hydroxyapatite. The compositional and morphological properties of prepared whiskers were studied by means of x-ray diffraction (XRD), Fouier transform infrared (FT-IR), scanning electron microscopy (SEM). The results indicated the evidence of nanosilicon dioxide particles on the surface of HAP whiskers. The size of nanosilicon dioxide particles depends on dropping and stirring rate. Hence, this new type of silica modified large-sized hydroxyapatite whiskers is a valuable candidate for biomedical applications.Key words: hydroxyapatite, hydrothermal co-precipitation, surface modified, whiskers


2013 ◽  
Vol 838-841 ◽  
pp. 2306-2309
Author(s):  
Guang Hua Wang ◽  
Kun Chen ◽  
Wen Bing Li ◽  
Dong Wan ◽  
Qin Hu ◽  
...  

Magnetic modified organobentonite (Fe3O4/CTAB–Bent) was synthesized by chemical co-precipitation method in which CTAB–Bent was firstly achieved via ion–exchange.The composite materials have been characterized by powder X–ray diffraction (XRD), Fourier transform infrared spectroscopy (FT–IR) and Scanning electron microscopy (SEM) . The results revealed that basal spacing of bentonite was increased through organic modification and the Fe3O4 particles synthesized which covering the surfaces of bentonite .Compared with natural bentonite, the adsorption capacity of Fe3O4/CTAB–Bent for Orange II was greatly enhanced and can be easily separated from the reaction medium by an external magnetic field after the treatment.


2018 ◽  
Vol 554 ◽  
pp. 95-104 ◽  
Author(s):  
Jinni Xin ◽  
Hongjie Cui ◽  
Zhenmin Cheng ◽  
Zhiming Zhou

2015 ◽  
Vol 1112 ◽  
pp. 489-492
Author(s):  
Ali Mufid ◽  
M. Zainuri

This research aims to form particles of hematite (α-Fe2O3) with a basis of mineral iron ore Fe3O4 from Tanah Laut. Magnetite Fe3O4 was synthesized using co-precipitation method. Further characterization using X-ray fluorescence (XRF) to obtain the percentage of the elements, obtained an iron content of 98.51%. Then characterized using thermo-gravimetric analysis and differential scanning calorimetry (TGA-DSC) to determine the calcination temperature, that at a temperature of 445 °C mass decreased by 0.369% due to increase in temperature. Further Characterization of X-ray diffraction (XRD) to determine the phases formed at the calcination temperature variation of 400 °C, 445 °C, 500 °C and 600 °C with a holding time of 5 hours to form a single phase α-Fe2O3 hematite. Testing with a particle size analyzer (PSA) to determine the particle size distribution, where test results indicate that the α-Fe2O3 phase of each having a particle size of 269.7 nm, 332.2 nm, 357.9 nm, 412.2 nm. The best quantity is shown at a temperature of 500 °C to form the hematite phase. This result is used as the calcination procedure to obtain a source of Fe ions in the manufacture of Lithium Ferro Phosphate.


2015 ◽  
Vol 31 (5) ◽  
pp. 948-954 ◽  
Author(s):  
ZHANG Xiao-Qing ◽  
◽  
XU Yan YAN ◽  
YANG Chun-Hui ◽  
ZHANG Yan-Ping ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document