scholarly journals Multi Effect Evaporator Design Calculation for Brown Sugar Production using Computational Fluid Dynamics

The industrial brown sugar production process is commonly started from grinding, filtering, first heating, sulfuric acid addition, decantation, and evaporation. Evaporation process is essential process stage in the production of brown sugar. The use of Multiple Effects Evaporator (MEE) has been becoming more common and plays an important role in the food industry, especially for producing high quality agricultural products. Therefore, several design parameters of MEE should be carefully considered such as pressure, temperature, and flow velocity. This study discusses the semi-iterative design of triple effect of feed forward system MEE for industrial-scale and simulation using Computational Fluid Dynamics (CFD). This study successfully determine the optimum value for the MEE parameters in the manufacture of brown sugar and also compared with Ms.Excel-Solver simulation. The CFD simulation indicates an accurate design process that can be employed to determine the effect of pressure, temperature, and flow velocity for MEE performance optimization.

Author(s):  
S N A Ahmad Termizi ◽  
C Y Khor ◽  
M A M Nawi ◽  
Nurlela Ahmad ◽  
Muhammad Ikman Ishak ◽  
...  

2013 ◽  
Vol 368-370 ◽  
pp. 599-602 ◽  
Author(s):  
Ian Hung ◽  
Hsien Te Lin ◽  
Yu Chung Wang

This study focuses on the performance of air conditioning design at the Dazhi Cultural Center and uses a computational fluid dynamics (CFD) simulation to discuss the differences in wind velocity and ambient indoor temperature between all-zone air conditioning design and stratified air conditioning design. The results have strong implications for air conditioning design and can improve the indoor air quality of assembly halls.


2021 ◽  
Vol 2053 (1) ◽  
pp. 012013
Author(s):  
N. Abdul Settar ◽  
S. Sarip ◽  
H.M. Kaidi

Abstract Wells turbine is an important component in the oscillating water column (OWC) system. Thus, many researchers tend to improve the performance via experiment or computational fluid dynamics (CFD) simulation, which is cheaper. As the CFD method becomes more popular, the lack of evidence to support the parameters used during the CFD simulation becomes a big issue. This paper aims to review the CFD models applied to the Wells turbine for the OWC system. Journal papers from the past ten years were summarized in brief critique. As a summary, the FLUENT and CFX software are mostly used to simulate the Wells turbine flow problems while SST k-ω turbulence model is the widely used model. A grid independence test is essential when doing CFD simulation. In conclusion, this review paper can show the research gap for CFD simulation and can reduce the time in selecting suitable parameters when involving simulation in the Wells turbine.


Author(s):  
John Fernandes ◽  
Saeed Ghalambor ◽  
Akhil Docca ◽  
Chris Aldham ◽  
Dereje Agonafer ◽  
...  

The objective of the study is to improve on performance of the current liquid cooling solution for a Multi-Chip Module (MCM) through design of a chip-scale cold plate with quick and accurate thermal analysis. This can be achieved through application of Flow Network Modeling (FNM) and Computational Fluid Dynamics (CFD) in an interactive manner. Thermal analysis of the baseline cold plate design is performed using CFD to determine initial improvement in performance as compared to the original solution, in terms of thermal resistance and pumping power. Fluid flow through the solution is modeled using FNM and verified with results from the CFD analysis. In addition, CFD is employed to generate flow impedance curves of non-standard components within the cold plate, which are used as input for the Hardy Cross method in FNM. Using the verified flow network model, design parameters of different components in the cold plate are modified to promote uniform flow distribution to each active region in the chip-scale solution. Analysis of the resultant design using CFD determines additional improvement in performance over the original solution, if available. Thus, through complementary application of FNM and CFD, a robust cold plate can be designed without requiring expensive fabrication of prototypes and with minimal computational time and resources.


Author(s):  
Sunita Kruger ◽  
Leon Pretorius

In this paper, the use of computational fluid dynamics is evaluated as a design tool to investigate the indoor climate of a confined greenhouse. The finite volume method using polyhedral cells is used to solve the governing mass, momentum and energy equations. Natural convection in a cavity corresponding to a mono-span venlo-type greenhouse is numerically investigated using Computational Fluid Dynamics. The CFD model is designed so as to simulate the climate above a plant canopy in an actual multi-span greenhouse heated by solar radiation. The aim of this paper is to investigate the influence of various design parameters such as pitch angle and roof asymmetry and on the velocity and temperature patterns inside a confined single span greenhouse heated from below. In the study reported in this paper a two-dimensional CFD model was generated for the mono-span venlo-type greenhouse, and a mesh sensitivity analysis was conducted to determine the mesh independence of the solution. Similar two-dimensional flow patterns were observed in the obtained CFD results as the experimental results reported by Lamrani et al [2]. The CFD model was then modified and used to explore the effect of roof pitch angle and roof asymmetry at floor level on the development of the flow and temperature patterns inside the cavity for various Rayleigh numbers. Results are presented in the form of vector and contour plots. It was found that considerable temperature and velocity gradients were observed in the centre of the greenhouse for each case in the first 40mm above the ground, as well as in the last 24mm close to the roof. Results also indicated that the Rayleigh number did not have a significant impact on the flow and temperature patterns inside the greenhouse, although roof angle and asymmetry did. The current results demonstrate the importance of CFD as a design tool in the case of greenhouse design.


Sign in / Sign up

Export Citation Format

Share Document