scholarly journals Derivation of Fundamental Solution of Heat Equation by using Symmetry Reduction

The objective of this article is to present the fundamental solution of heat equation using symmetry of reduction which is associated with partial derivatives of heat equations through its initial conditions (ICs). To emphasize our main results, we also consider some important way of solving of partial differential equation. The main results of our paper are quite general in nature and yield a very large interesting fundamental solution of heat equation and it is used for problems of differential mathematics and mathematical physics special in the area of thermodynamics.

1980 ◽  
Vol 87 (3) ◽  
pp. 515-521
Author(s):  
Albert E. Heins

In a recent paper, hereafter referred to as I (1) we derived two alternate forms for the fundamental solution of the axially symmetric wave equation. We demonstrated that for α > 0, the fundamental solution (the so-called free space Green's function) of the partial differential equationcould be written asif b > rorif r > b.


2020 ◽  
Vol 70 (3) ◽  
pp. 34-44
Author(s):  
Kamen Perev

The paper considers the problem of distributed parameter systems modeling. The basic model types are presented, depending on the partial differential equation, which determines the physical processes dynamics. The similarities and the differences with the models described in terms of ordinary differential equations are discussed. A special attention is paid to the problem of heat flow in a rod. The problem set up is demonstrated and the methods of its solution are discussed. The main characteristics from a system point of view are presented, namely the Green function and the transfer function. Different special cases for these characteristics are discussed, depending on the specific partial differential equation, as well as the initial conditions and the boundary conditions.


Author(s):  
F.T. Bogatyreva ◽  

For a first-order partial differential equation with the Dzhrbashyan - Nersesyan operator of fractional differentiation, we construct a fundamental solution and derive a general representation of the solutions in rectangular domains.


2016 ◽  
Vol 53 (3) ◽  
pp. 938-945 ◽  
Author(s):  
K. Bruce Erickson

AbstractThe explosion probability before time t of a branching diffusion satisfies a nonlinear parabolic partial differential equation. This equation, along with the natural boundary and initial conditions, has only the trivial solution, i.e. explosion in finite time does not occur, provided the creation rate does not grow faster than the square power at ∞.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Dawei Cheng ◽  
Wenke Wang ◽  
Xi Chen ◽  
Zaiyong Zhang

For one-dimensional (1D) nonlinear consolidation, the governing partial differential equation is nonlinear. This paper develops the finite analytic method (FAM) to simulate 1D nonlinear consolidation under different time-dependent loading and initial conditions. To achieve this, the assumption of constant initial effective stress is not considered and the governing partial differential equation is transformed into the diffusion equation. Then, the finite analytic implicit scheme is established. The convergence and stability of finite analytic numerical scheme are proven by a rigorous mathematical analysis. In addition, the paper obtains three corrected semianalytical solutions undergoing suddenly imposed constant loading, single ramp loading, and trapezoidal cyclic loading, respectively. Comparisons of the results of FAM with the three semianalytical solutions and the result of FDM, respectively, show that the FAM can obtain stable and accurate numerical solutions and ensure the convergence of spatial discretization for 1D nonlinear consolidation.


Author(s):  
Kaitlyn Parsons ◽  
Tyler Reichanadter ◽  
Andi Vicksman ◽  
Harvey Segur

The heat equation is a partial differential equation that elegantly describes heat conduction or other diffusive processes. Primary methods for solving this equation require time-independent boundary conditions. In reality this assumption rarely has any validity. Therefore it is necessary to construct an analytical method by which to handle the heat equation with time-variant boundary conditions. This paper analyzes a physical system in which a solid brass cylinder experiences heat flow from the central axis to a heat sink along its outer rim. In particular, the partial differential equation is transformed such that its boundary conditions are zero which creates a forcing function in the transform PDE. This transformation constructs a Green’s function, which admits the use of variation of parameters to find the explicit solution. Experimental results verify the success of this analytical method. KEYWORDS: Heat Equation; Bessel-Fourier Decomposition; Cylindrical; Time-dependent Boundary Conditions; Orthogonality; Partial Differential Equation; Separation of Variables; Green’s Functions


Author(s):  
Kahsay Godifey Wubneh

In this study, we developed a solution of nonhomogeneous heat equation with Dirichlet boundary conditions. moreover, the non-homogeneous heat equation with constant coefficient. since heat equation has a simple form, we would like to start from the heat equation to find the exact solution of the partial differential equation with constant coefficient. to emphasize our main results, we also consider some important way of solving of partial differential equation specially solving heat equation with Dirichlet boundary conditions. the main results of our paper are quite general in nature and yield some interesting solution of non-homogeneous heat equation with Dirichlet boundary conditions and it is used for problems of mathematical modeling and mathematical physics.


Sign in / Sign up

Export Citation Format

Share Document