scholarly journals Design of Inset Feed Rectangular Microstrip Patch Antenna with Different Dielectric Substrates

Microstrip antennas find wide applications in high-speed vehicles, and missiles, tanks, satellite communications, mobile communications and wireless communications etc. The main advantage of these antennas over conventional microwave antenna is light weight, low volume, low cost, planar structure and compatibility with integrated circuits. The present paper deals with the design and simulation of an inset feed rectangular microstrip patch antenna using different dielectric substrate materials such as Arlon AD320, FR4 (Epoxy glass) and Vaccum (Air) and having dielectric constant ( )= 3.2, 4.4 and 1.0 respectively and also comparing their performance characteristics. The resonant frequency of the proposed antenna is designed at frequency of 1.9 GHz, which is lying in the L-band region. The antenna software such as High Frequency Structure Simulator is used for designing of proposed antenna. The simulation results shows the maximum bandwidth is 40MHz and minimum gain is 2dB is obtained using FR4 (Epoxy-glass) substrate whose dielectric constant ( ) = 4.4, at which return loss is -35.67dB. Maximum gain is 9.72dB and bandwidth is 39MHz obtained using Vaccum (Air), whose dielectric constant ( ) = 1.0. However, 6 dB gain and 25MHz bandwidth is obtained using Arlon AD 320A substrate, whose dielectric constant ( ) = 2.2 at which return loss is obtained -24.57dB. The proposed antenna can be used for military telemetry, GPS, mobile phone (GSM) and amateur radio applications.

2016 ◽  
Vol 78 (5-4) ◽  
Author(s):  
Muhammad Syafiq Noor Azizi ◽  
Azahari Salleh ◽  
Adib Othman ◽  
Najmiah Radiah Mohamad ◽  
Nor Azlan Aris ◽  
...  

In this paper, we study behavior of Ultra wideband antenna which is Rectangular Slotted Microstrip Patch Antenna. Then, the antenna operated in proximity of human arm model. Furthermore, the antenna is designed on a FR-4 substrate with dielectric constant of 4.3 and thickness 1.6 mm. This antenna simulated in CST Microwave Studio software. In order to test the antenna, an arm model was numerically modelled. The study shows properties and performances of antenna when it is placed in three situations which in free space, outside and inside of human arm model. The properties of UWB antenna in term of return loss, gain, directivity and radiation pattern in the three situations is simulated and discussed.


Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents Dual-Band proximity coupled feed rectangular Microstrip patch antenna with slots on the radiating patch and Defected Ground Structure. Initially a simple proximity coupled feed rectangular Microstrip patch antenna resonating at 2.4 GHz is designed. Etching out a ‘Dumbbell’ shaped defect from the ground plane and ‘T’ shaped slot from the radiating patch of the proximity coupled feed rectangular Microstrip patch antenna, results in a Dual-Band operation, i.e., resonating at 2.4 GHz and 4.5 GHz; with 30.3 % and 18.8% reduction in the overall area of the patch and the ground plane of the reference antenna respectively. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 123.6 MHz and C-band at frequency of 4.5 GHz with bandwidth of 200 MHz, and a very good return loss of -22.1818 dB and -19.0839 dB at resonant frequency of 2.4 GHz and 4.5 GHz respectively is obtained. The proposed antenna is useful for different wireless applications in the S-band and C-band.</p>


2018 ◽  
Vol 7 (2.21) ◽  
pp. 151
Author(s):  
Kavitha Thandapani ◽  
Shiyamala Subramani

Dual U Slot Loaded Truncated Microstrip Patch Antenna is designed for wireless applications. The proposed geometry comprised of two inverted U slots in truncated circular patch antenna operation covering 2.24 to 2.72 GHZ frequency bands are obtained. It is found that the slot and truncated is used to improve the bandwidth and return loss respectively. The resonant frequency is found to be 2.5GHZ. The bandwidth of the proposed antenna for lower and upper resonant frequency is found to be 19.2%. The proposed antenna is fed by 50Ω co-axial probe feed and simulated on Rogers RT/duroid5880 substrate.  Rogers RT/duroid 5880 substrate has dielectric constant and loss tangent of 2.2 and 0.0009 respectively. An air gap is used in this proposed design for tuning the desired frequencies and increasing the bandwidth. The antenna shows an acceptable gain of 2.1dB to 5.7dB with unidirectional pattern over the obtained frequency band. 


Author(s):  
Dr. N. Srinivasa Rao

The microstrip antenna required for higher frequency application is to be light in weight, easy to fabricate and small in size. As the applications in S-band and Ku-band are increasing with the increase in technology the requirement for higher data rate so the proposed work is to design a 24GHz (ka band) rectangular microstrip antenna with stripline feeding, return loss to be less than -20dB and VSWR less than 0.5. The substrate is chosen to be RT/duroid 5880 with relative permeability 2.2. it is capable of covering satellite application, telemetry. HFSS software tool is used to design the antenna.


Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents the bandwidth enhancement of a Proximity Coupled Feed Rectangular Microstrip Patch Antenna using a new Defected Ground Structure - an ‘inverted SHA’ shaped slot on the ground plane of the proximity coupled feed rectangular Microstrip patch antenna. The parameters such as Bandwidth, Return loss, VSWR and Radiation efficiency are improved in the proposed antenna than simple proximity coupled feed rectangular Microstrip patch antenna without Defected Ground Structure. A comparison is also shown for the proposed Microstrip patch antenna with the antenna structure without Defected Ground Structure. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 180 MHz. A very good return loss of -47.9223 dB is obtained for the Microstrip patch antenna with an ’inverted SHA’ shaped Defected Ground Structure. Implementing an ‘inverted SHA’ shaped defect in the ground plane of the proximity coupled feed rectangular Microstrip patch antenna results in 5.3% improvement in bandwidth with 16.01% reduction in the overall area of the ground plane as compared to the Microstrip patch antenna without Defected Ground Structure.</p>


2020 ◽  
Vol 16 ◽  
pp. 01-12
Author(s):  
Rabnawaz Sarmad Uqaili ◽  
Junaid Ahmed Uqaili ◽  
Sidrish Zahra ◽  
Faraz Bashir Soomro ◽  
Ali Akbar

This paper presents the design of a dual-band microstrip patch antenna for Wi-Fi that operates at 2.5 GHz and 5.8 GHz. The antenna contains a rectangular patch with two rectangular slots. The first slot is incorporated in the patch while the second slot is incorporated in the ground plane. The antenna is based on a microstrip fed rectangular patch printed on the FR-4 epoxy substrate with a dielectric constant of 4.4 and a thickness of 1.6 mm with patch size 24 mm × 21 mm. The simulated result shows that the realized antenna successfully works on dual-band and subsequently achieves a bandwidth of 100 MHz and 200 MHz as well as the return loss about -29.9 dB and -15.16 dB for 2.5 GHz and 5.8 GHz respectively. A stable omnidirectional radiation pattern is observed in the operating frequency bands. The antenna meets the required specifications for 802.11 WLAN standards.


This paper presents the design and simulation of a rectangular microstrip patch antenna with enhanced results. Antennas are playing the most important key role in wireless communication systems and especially microstrip patch antenna is the simplest and best form for mobile communication systems. Therefore, the design of antenna for mobile satellite communication and space to earth communication is described in this proposed work. The working of rectangular micro strip patch antenna is studied and the effect of height of the substrate on antenna performance is analyzed and the results are plotted. It has been noticed that the height of substrate should be neither small nor large. The effect of inserting a slot in the patch is also observed in this paper. Return Loss results are plotted for the designed structure and it is noticed that return loss is almost doubled by inserting a slot. Further two symmetrical slots are inserted in the patch and the respective results are plotted. Insertion of two slots gave multiple operating frequencies to the antenna with a compromise of s11. The simulation of proposed structures of antennas is done using ANSYS HFSS (high-frequency structure simulator) which is commercially used as a finite element method solver for electromagnetic structures. A sphere with human brain characteristics is created and average SAR (specific absorption ratio) is plotted on the head model. The proposed antenna has enhanced return loss of -52dB and VSWR of 1.005 at 2.24GHz. This work also introduces multiple operating frequencies using two slots of same size.


Radiations improvement in a probe fed rectangular microstrip patch antenna using linear slot etched ground plane is proposed. Conventional MPA is designed using Glass Epoxy FR4 substrate. Substrate has dielectric constant 4.4 and its thickness 1.6 mm, operated at resonant frequency 3.05 GHz. The proposed method is simple and easy to etch on a substrate. This will suppress cross-polarized (XP) radiation field only without disturbing the dominant mode and co-polarized radiations. The concept has been tested using HFSS tool and verified its results experimentally. The experimental results show a good agreement with the simulation results.


2021 ◽  
Author(s):  
A. Pon Bharathi ◽  
Allan J Wilson ◽  
S. Arun ◽  
V. Ramanathan

This examination work is focused around planning and simulating another kind of inset feed Disc Shaped Microstrip Patch Antenna (DSMPA) with Inset feed and Defected ground plane (DGP). By presenting a round space at the focal point of the ground plane, improved attributes of Microstrip patch antenna can be accomplished. The proposed Disc Shaped Microstrip patch antenna is reverberating at 5 GHz. Simulation has been finished by utilizing reenactment programming HFSS version15. From recreation results, it discovers that our examined Disc Shaped Microstrip patch antenna yields better return loss of - 25.1 dB & VSWR estimation of 0.96 dB. The examined DSMPA is yielding a higher radiation efficiency of 77.20 %. The minimized size and higher radiation efficiency contrasted with rectangular Microstrip patch antenna makes it all the more generally helpful for satellite communications.


Sign in / Sign up

Export Citation Format

Share Document