scholarly journals GIS and AHP Based Site Suitability for Sewage Treatment Plant in Sultanpur District, India

Sewage generated from the urban areas is creating an unwanted burden on the environment. This makes it necessary for the urban areas to have the facility of sewage treatment plant. But where? As the STP have with them associated environmental and other risks, high cost of land and other factors making this decision a tricky one. It is at this juncture where technology in the form of GIS and AHP comes in picture to rescue the planners and decision-makers. In the present study it is shown how the GIS and AHP methods can be used to shortlist and rank the various site to be used to house a sewage treatment plant. STP site (S5) was found to be top-ranked among all other sites

2018 ◽  
Vol 1 (1) ◽  
pp. 11
Author(s):  
Erni Setyowati ◽  
Nashrullah Dahlan Lubis ◽  
Subrata Aditama Kittie A.U ◽  
Agitta Raras Putri

Indonesia is the fourth most populous country in the world. The highest population density exists in urban areas and gradually becomes lower in periphery or rural. Therefore the city in Indonesia often looks slum because of over density. The village is the smallest part of a city. In crowded cities there are often slum villages. This paper highlights a model of slum villages in Wonosobo, Sruni village, and solutions to transform socio-cultural communities through renewable energy design based on low carbon concept. The method used is quantitative method based on demographic data of Sruni village, Wonosobo. Based on data and analysis, it is found that renewable energy that can be applied in Sruni village are sanitation, drainage and water waste management, solid waste, rain water harvesting, water wheel and solar panel energy. At the end of the discussion, it is concluded that there are needs to be re-densification or verticalization of the house, in order to obtain more public green open spaces. Meanwhile, based on quantitative analysis, Sruni village needs rain water harvesting system, additional 1 unit of communal Sewage Treatment Plant (STP) serving 80-100 households gray and black water, and 1 units of water wheels to accomodate electricity need of four inhabitant RTs in Sruni village .


2021 ◽  
Vol 23 (05) ◽  
pp. 306-316
Author(s):  
Ankit Ankit ◽  
◽  
S.K. Singh ◽  

Sewage whether treated or untreated, ultimately discharge in lakes, rivers, streams, and oceans. We consider groundwater as pure, but unfortunately, sewage is one of the major reasons behind wastewater-associated diseases. Nearly 78% of the water flows back to the environment without any treatment. This can lead to numerous health and environmental problems so it is better to treat wastewater before disposal and further proper management can help in meeting the public’s water demand. As per today’s scenario, a number of innovations are required to operate treatment plants at high efficiency because of increasing domestic, commercial, and industrial waste. And this rise is taking place due to several reasons – urbanization, increasing population, economic development, and improved living conditions, etc. Nowadays people of both urban and peri-urban areas are using wastewater to irrigate their crops, often because they do not have any alternate source of irrigation water. New technologies are continuously being introduced in the sewage treatment plants to exhibit good performance. The paper focuses on reviewing the various sewage treatment methods and their results.


2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


2008 ◽  
Vol 37 (2) ◽  
Author(s):  
Maciej Walczak

Changes of microbial indices of water quality in the Vistula and Brda rivers as a result of sewage treatment plant operationThis paper reports the results of studies of microbiological changes in the water quality of the Vistula and Brda rivers after the opening of sewage treatment plants in Bydgoszcz. The study involved determining the microbiological parameters of water quality. Based on the results obtained, it was found that the quality of the water in both rivers had improved decidedly after the opening of the plants, although an increased number of individual groups of microorganisms was found at the treated sewage outlet from one of the plants.


2000 ◽  
Vol 36 (4) ◽  
pp. 161-171
Author(s):  
KENITSU KONNO ◽  
NAOKI ABE ◽  
YOSHIRO SATO ◽  
KOJI AKAMATSU ◽  
MAKOTO ABE ◽  
...  

2017 ◽  
Vol 1 (1) ◽  
pp. 46-55 ◽  
Author(s):  
Athar Hussain ◽  
Manjeeta Priyadarshi ◽  
Saif Said ◽  
Suraj Negi

Most of the industrial sewage effluents used for irrigation contains heavy metals which cause toxicity to crop plants as the soils are able to accumulate heavy metal for many years. The vegetables grown for the present study were irrigated with treated wastewater brought from a nearby full-scale sewage treatment plant at different compositions along with tap water as a control. The concentration levels of the Cd, Co, Cu, Mn and Zn in the soil were found to below the toxic limits as prescribed in literature. Daily Intake Metals (DIM) values suggest that the consumption of plants grown in treated wastewater and tap water is nearly free of risks, as the dietary intake limits of Cu, Fe, Zn and Mn. The Enrichment Factor for the treated wastewater irrigated soil was found in order Zn> Ni> Pb> Cr> Cu> Co> Mn> Cd. Thus, treated wastewater can be effectively used for irrigation. This will have twofold significant environmental advantages: (1) helpful to reduce the groundwater usage for irrigation and (2) helpful to reduce the stress on surface water resources.


Sign in / Sign up

Export Citation Format

Share Document