scholarly journals A New Diminutive Octa Polarization Reconfigurable Circular Patch Antenna

This proposes a new diminutive octa polarization reconfigurable circular patch antenna design. This new antenna can operate in eight different polarizing states (6 different angles of linear polarization and 2 circular polarization states) with the help of a reconfigurable probe feed network. The antenna comprises of a circular layer of radiation with four equally spaced slits at the boundary of the circular patch to obtain size reduction. The bias voltages of six pairs of PIN diodes are interval between each state. A 3 dB hybrid coupler and a RF switch are used to produce reconfiguration between circular polarization states of the right and left hand. The proposed antenna was designed using CST microwave studio, fabricated as a prototype model and tested which produces desired values for various parameters of antenna including compact size. The designed antenna operates within 2.4-2.5 GHz frequencies suitable for wireless applications

2015 ◽  
Vol 77 (10) ◽  
Author(s):  
Mohamed Nasrun Osman ◽  
Mohamad Kamal A. Rahim ◽  
Mohd Fairus Mohd Yusoff ◽  
Mohamad Rijal Hamid ◽  
Huda A. Majid ◽  
...  

This paper presents the polarization reconfigurable circular patch antenna. The reconfigurability feature is realized through the alteration of the feeding network. The antenna consists of a circular patch as a radiator, and orthogonally fed by a co-planar waveguide (CPW) slotline which terminated with tapered transformer. The CPW slotline are interconnected with quarter wavelength phase delay slotline. Eight switches are placed at the CPW transmission slotline, to either activate or deactivate the phase delay slotline. Consequently, depending on the switch configurations, the polarization can be altered to the desired sense, either linear, right-hand circular or left-hand circular polarization.


2009 ◽  
Vol 51 (6) ◽  
pp. 1419-1424 ◽  
Author(s):  
J. L. Masa-Campos ◽  
E. Casla Sanz ◽  
M. Sierra-Pérez ◽  
J. M. Fernandez

In this communication, a circular patch antenna is reported for dual- band operation based on VIAs. Initially the patch is resonating at single band with Linear Polarization (LP), and the Circular Polarization (CP) is obtained by inserting semi circular cuts at the edges of circular patch. The second band is achieved by loading the vertical metallic VIAs along the circumference of the patch antenna. The reported antenna is working at 2.4 GHz (Wi-Fi) and 3.5 GHz (5G) bands with Return Loss Band Width (RLBW) of 4.83% and 10.37% respectively. The Axial Ratio (AR) bandwidth at 5G band is 2.38% (3.31- 3.39 GHz)


Author(s):  
Nurhayati Nurhayati ◽  
Paulen Aulia Lutfia ◽  
Raimundo Eider Figueredo Sobrinho ◽  
Alexandre Manicoba De Oliveira ◽  
João Francisco Justo Filho ◽  
...  

Microstrip antenna with circular polarization can be applied for many applications. Some microstrip antenna with square, circular, triangular, and hexagonal shape has been designed to get return loss, axial ratio, and radiation performance. We compare twelve microstrip antenna by maintaining its substrate dimension, feeding shape, and outer patch dimension. Even though antenna has a circular patch, it doesn’t always produce circular polarization. From the simulation, we found that with add some structure, the antenna can reach multiband resonance from 1 to 6 GHz. The Circular patch antenna reached seven numbers of the multiband resonance frequency. The hexagonal patch antenna reaches the highest directivity as 9.53 dBi. The circular polarization is achieved for a square and Hexagonal patch shape with axial ratio value is 1.96 dB at 4 GHz and  1.26 dB at 4.1 GHz sequentially at phi 900 and theta 900. 


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yao Chen ◽  
Longfang Ye ◽  
Jianliang Zhuo ◽  
Yanhui Liu ◽  
Liang Zhang ◽  
...  

In this paper, a compact frequency reconfigurable circular patch antenna with an arc-shaped slot loaded in the ground layer is proposed for multiband wireless communication applications. By controlling the ON/OFF states of the five PIN diodes mounted on the arc-shaped slot, the effective length of the arc-shaped slot and the effective length of antennas current are changed, and accordingly six-frequency band reconfiguration can be achieved. The simulated and measured results show that the antenna can operate from 1.82 GHz to 2.46 GHz, which is located in DCS1800 (1.71–1.88 GHz), UMTS (2.11–2.20 GHz), WiBro (2.3–2.4 GHz), and Bluetooth (2.4–2.48 GHz) frequency bands and so forth. Compared to the common rectangular slot circular patch antenna, the proposed arc-shaped slot circular patch antenna not only has a better rotational symmetry with the circular patch and substrate but also has more compact size. For the given operating frequency at 1.82 GHz, over 55% area reduction is achieved in this design with respect to the common design with rectangular slot. Since the promising frequency reconfiguration, this antenna may have potential applications in modern multiband and multifunctional mobile communication systems.


2021 ◽  
Vol 2128 (1) ◽  
pp. 012007
Author(s):  
Sherif El Dyasti ◽  
Maged Medhat Mostafa ◽  
Prof. Hussien Ghoz ◽  
Mohamed Fathy Abo Sree

Abstract In this work, a circular patch antenna is designed and a parametric study in terms of different geometrical parameters is conducted. As a second step, a parasitic chip is introduced on top of the proposed circular patch antenna in the aim to enhance the gain and antenna efficiency. The proposed antenna operates at 25.61 GHz (With a frequency range between24.383 GHz and 27.7 GHz), suitable for 5G applications. The antenna modelling with and without parasitic chip, along with the performance analysis is conducted with CST Studio Electromagnetic (EM) simulator software. A compact size of 10×10×1.547 mm3, easy to fabricate, broadband characteristics up to 3.31 GHz with a high gain up to 6.87 dB, total efficiency of 95 % and a minimum return loss low than -68.02 dB covering the operating frequency range. Lastly, to investigate and validate the antenna overall performance, both frequency and time domain-based simulation is performed, and a good agreement is obtained.


Sign in / Sign up

Export Citation Format

Share Document