scholarly journals Mitigation of Blackhole Attack on MANETs using ABC and ANN Algorithm

Mobile ad hoc network (MANET) is an important field of research that comprises of moveable nodes. These nodes communicate with each other through wireless links. Therefore, it becomes essential to design a secure network as it finds applications in different fields where data and communication are important like that in defense areas and disaster rescue operations. This paper focuses on detecting Blackhole nodes in MANETs and preventing it from the same. In this work, Ad hoc On-Demand Distance Vector (AODV) is employed as a routing mechanism and a secure network is established using Artificial Bee Colony (ABC) algorithm as an optimization technique in combination with Artificial Neural Network (ANN) as a classification algorithm to identify the Blackhole nodes. Simulations are carried out in MATLAB and the efficiency of the network in terms of Throughput, Packet Delivery Ratio (PDR), End-to-End Delay and Energy Consumption are measured. Throughput and PDR have been increased by 11.11%, 4.9 %, whereas end- to- end delay has been reduced by 4.93% as compared to existing work proposed by Ashish et al.[6].

2021 ◽  
pp. 2150004
Author(s):  
ANKUR GOYAL ◽  
VIVEK KUMAR SHARMA ◽  
SANDEEP KUMAR ◽  
RAMESH CHANDRA POONIA

A MANET is a category of ad hoc protocol that could vary positions and track itself on the flutter. It utilizes wireless connections that are attached to several networks. They include wirelessly in a self-configured, self-healing network while not having permanent communication linked in a collection of mobile networks. The network topology of nodes typically varies in MANET, and nodes are free to stir errantly and independently as a router as they accelerate traffic to more nodes within the network. Ad hoc on-demand distance vector (AODV) was employed for node selection to attain the shortest path strategy in existing techniques. In the proposed system, the hybrid AODV (HAODV) technique incorporates the MFR (Most Forward within Radius) technique to detect the shortest path routing algorithm. The MFR method was deployed for selecting the neighbor node, while HAODV was deployed to find the shortest path. To find the shortest path based on the updating equation, the Firefly algorithm is also implemented into the Hybrid AODV. The proposed work’s performance is calculated by different network parameters like the end to end delay, average routing overhead, throughput, and packet delivery ratio. After comparing AODV and DSR algorithms, the proposed algorithm (HAODV) shows improvement in packet delivery ratio, end-to-end delay, Routing overhead, and throughput.


Author(s):  
Rajendra Prasad P ◽  
Shiva Shankar

Introduction: The aim of the securing energy routing protocol, is to provide the countermeasures to the attacks par-ticularly to the black hole in mobile ad-hoc network, and enhancing the network performance metric throughput al-so reducing the end-to-end delay between the nodes in the network.To build the protocol that enhances the perfor-mance of the network by modifying the existing DSR protocol by introducing new route discovery mechanism in the proposed protocol. Method: The proposed protocol implementation has two phases, route request/reply phase and route confirm phas-es. During the route discovery process, the route discovery from the source to destination process are described by sending the RREQ packet from the source hub as shown in Fig. 1(a), when it does not have one accessible and crav-ings a route to a destination. The source node transmits the RREQ to its associate nodes and the destination node re-ply with RREP. When the source receives reply message, the source node respond with reverse path with a confirm RCON message and providing security to the nodes in the network. Results: To verify the performance of the proposed protocol against the existing DSR protocol are compared with respect to various network metrics like end-to-end delay and packet delivery ratio and validated the result by com-paring both routing algorithm using Network Simulator 2. Conclusion: The results of the proposed SERP strongly safeguard against the attacks in the network and the packet delivery ratio is increased compared with the DSR also the end-to-end delay is reduced in the proposed protocol. Discussion: Mobile ad-hoc networks are being dynamic in nature, it associates with issues relating to secure routing, energy and are generally vulnerable to several types of attacks. The DSR is one of the widely used reactive proto-cols available for the mobile ad-hoc network and the proposed work enhancing the security of the network in the existing pro


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ali Choukri ◽  
Ahmed Habbani ◽  
Mohamed El Koutbi

Due to the dynamic nature of mobile ad hoc network (MANET), the quality of service (QoS) requires several improvements. The present papercomeswithin the framework of research to optimize QoS in MANET. In this paper, we propose a novel version of OLSR based on the clustering approach which is inspired from Lin and Chu heuristic and adapted to beimplemented inOLSR. We studied its stability and we compared its performances to those of standard OLSR. The metrics we used in evaluating network performances were average end-to-end delay, control routing overhead, and packet delivery ratio. Experimental results show that our alternative significantly reduces the traffic reserved to monitoring the network, which positively influences other performances such as throughput, delay, and loss.


Author(s):  
Yahya M. Tashtoush ◽  
Mohammad A. Alsmirat ◽  
Tasneem Alghadi

Purpose The purpose of this paper is to propose, a new multi-path routing protocol that distributes packets over the available paths between a sender and a receiver in a multi-hop ad hoc network. We call this protocol Geometric Sequence Based Multipath Routing Protocol (GMRP). Design/methodology/approach GMRP distributes packets according to the geometric sequence. GMRP is evaluated using GloMoSim simulator. The authors use packet delivery ratio and end-to-end delay as the comparison performance metrics. They also vary many network configuration parameters such as number of nodes, transmission rate, mobility speed and network area. Findings The simulation results show that GMRP reduces the average end-to-end delay by up to 49 per cent and increases the delivery ratio by up to 8 per cent. Originality/value This study is the first to propose to use of geometric sequence in the multipath routing approach.


In today’s worlds, Mobile Ad-Hoc Network (MANET) plays most important role in the field networks technology in the world. The MANET has been rapidly rising and becoming significant from the last decade. A MANET is a kind of wireless network which has been set-up without requirement of fixed infrastructure where mobile nodes are connected over wireless link. Due to moving nature of the devices, the network topology is unstable and will change dynamically. That’s why stable routing in MANET cannot work properly. In this research paper, a new routing algorithm is proposed to get better routing performance in the MANET. The proposed algorithm designed based on the number of neighbors in the network. Planned algorithm is the improvement of GBR-CNR-LN (GBR-CNR with less neighbors) by calculating the stay time between the selected neighbor nodes and the transmission nodes. If the stay time of sender node is more than the packet transmission time then the selected node is the efficient neighbor selection. The algorithm is implemented and results are analyzed. The results of this paper show the usefulness of the proposed algorithm. The Evaluation of AODV protocol was carried out using Python and outcome of this evaluation showed that proposed Algorithm gave better results than GBR-CNR with less neighbor in terms of End-to-End delay, Number of control message transferred(Routing Overhead) and Network Load. The proposed Algorithm (GC-ENS) decrease Average End-to-End delay 52.54 %, reduce Average Routing Overhead 60.54% and decline the Average load on Network 61.17%.


Wireless networks are been used now-a-days. The most important fact about wireless network is it is mobile. It is thus used in many fields. One of the most important applications of wireless networks is Mobile Ad hoc NETwork (MANET) in which all the nodes work as both transmitter and receiver. MANETs are used in various fields like military, industry and emergency recovery. In order to provide adequate security against multiple attacks, the researchers are of the opinion that detection-based schemes should be incorporated in addition to traditionally used prevention techniques. Intrusion Detection and Prevention System (IDPS) is an effective defense mechanism that detects and prevents the security attacks at various levels. In recent work a polynomial key is employed for achieving useful key generation process and a polynomial is generated to compute the pair-wise key but it can be easily detected by the attacker so to improve the security in IDPS system, this work proposes the secure routing using Novel SEcured Keys Generation (NSEKG) against IDPS system. This proposal implements with two major keys: Secure Key (SeK) and Sharing key (ShK) creation is performed via the use of the User Property based Artificial Bee Colony (UPABC) algorithm and the frequency based behavior with certainty measurement on routing paths. These SeK and ShK keys creation with UPABC scheme exploits the encrypted value of the packets and the decryption determine whether the route reply is the result of a malicious node or not. The proposed NSEKG -IDPS system is very effective for communication attacks and needs to be gradually improved in order to detect multiple attacks. The performance is evaluated primarily in accordance with the subsequent metrics like Packet delivery ratio (PDR), Routing Overhead (RO), End-End-Delay (E2E), and Throughput


Author(s):  
Linna Oktaviana Sari ◽  
Agusurio Azmi ◽  
Ery Safrianti ◽  
Feranita Jalil

Pekanbaru city is a large area, therefore traffic congestion often occurs due to the density of society’s vehicles. From this problem, it is needed a technology that can exchange information between vehicles. Information Technology that can involve many vehicles with special network types without dependence on an infrastructure is Ad Hoc Network. One type of this network is Vehicular Ad Hoc Network (VANET). VANET is a new concept in enabling communication between Vehicle to Vehicle (V2V). For efficient data packet delivery, VANET requires a routing protocol. In this research, for simulated and analyzed performance is used the Dynamic Source Routing (DSR) and Temporally Ordered Routing Algorithm (TORA) protocol. NS-2 is used to simulated a moved nodes, SUMO software is used to simulated real map of SKA Mall crossroad and parameter the quality of performance routing protocol DSR can determined by End to End Delay, Packet Delivery Ratio (PDR) and Routing Overhead (RO). This simulation uses scenario 100 nodes, 150 nodes, 200 nodes and 250 nodes. The simulation results with the scenario of changing the number of nodes, the DSR routing protocol produces better performance with an average of  End to End Delay is 0.1066 s, average of PDR is 95.45% and average of RO is 1.0076. While the TORA routing protocol has an average of End to End Delay is 0.1163s, average of PDR is 93.49% and average of RO is 1.0801. And in the scenario of node speed changes, the TORA routing protocol produces better performance with an average of End to End Delay is 0.0861 s and average of PDR 97.37%. While the DSR routing protocol is better with an average of RO is 1.0076.


Author(s):  
Nadeem Iqbal ◽  
Mohammad Shafie Bin Abd Latiff ◽  
Shafi’i Muhammad Abdulhamid

Dynamic topology change and decentralized makes routing a challenging task in mobile ad hoc network. Energy efficient routing is the most challenging task in MANET due to limited energy of mobile nodes. Limited power of batteries typically use in MANET, and this is not easy to change or replace while running communication. Network disorder can occur for many factors but in middle of these factors deficiency of energy is the most significant one for causing broken links and early partition of the network. Evenly distribution of power between nodes could enhance the lifetime of the network, which leads to improving overall network transmission and minimizes the connection request. To discourse this issue, we propose an Energy Aware Routing Protocol (EARP) which considers node energy in route searching process and chooses nodes with higher energy levels. The EARP aim is to establish the shortest route from source to destination that contains energy efficient nodes. The performance of EARP is evaluated in terms of packet delivery ratio, network lifetime, end-to-end delay and throughput. Results of simulation done by using NS2 network simulator shows that EARP can achieve both high throughput and delivery ratio, whereas increase network lifetime and decreases end-to-end delay.


Author(s):  
Irfan Ahmad ◽  
Fahad Masood ◽  
Arbab Wajid Ullah Khan

In Mobile Ad hoc Networks (MANET) nodes often change their location independently where neither fixed nor centralized infrastructure is present. Nodes communicate with each other directly or via intermediate nodes. The advantages of the MANET layout lead to self-structure and compatibility to most important functions such as traffic distribution and load balancing. Whenever the host moves rapidly in the network the topology becomes updated due to which the structure of MANET varies accordingly. In the literature, different routing protocols have been studied and compared by researchers. Still, there are queries regarding the performance of these protocols under different scenarios. MANETs are not based on a predesigned structure. In this paper, the performance assessment of the Quality of Services (QoS) for different protocols such as Ad hoc On-Demand Distance Vector (AODV), Temporally Ordered Routing Algorithm (TORA) and Zone Routing Protocol (ZRP) in the existence of the various number of communicating nodes is studied. The performance matrices throughput, end – to – end delay and packet delivery ratio are considered for simulations. Ns 2.35 simulator is used for carrying out these simulations. Results are compared for AODV, TORA, and ZRP routing protocols. The results show that AODV and TORA perform well in end – to – end delay as compared to zone routing protocol. Zone routing protocol performs well in packet delivery ratio and throughput as compared to both the other protocols.


Author(s):  
Mila Rosiana ◽  
Andy Hidayat Jatmika ◽  
Ariyan Zubaidi

Mobile Ad-Hoc Network (MANET) adalah jaringan wireless dari kumpulan node yang tidak memiliki router tetap. Setiap node dalam jaringan bertindak sebagai router yang bertanggung jawab untuk menemukan dan menangani rute antar node. Dalam penelitian ini, konsep energy aware menggunakan algoritma EA-SHORT diterapkan pada kerangka kerja Zone Routing Protocol (ZRP). EA-SHORT mencoba mendistribusikan beban jaringan ke semua node yang ada dengan memanfaatkan variasi jumlah energi dengan memilih node yang memiliki cukup energi yang dapat berpartisipasi dalam rute dan menghindari node yang memiliki energi rendah. Kinerja ZRP akan dibandingkan dengan EA-SHORT ZRP yang telah dimodifikasi dengan EA-SHORT yang diukur dari nilai parameter yang ditentukan. Dari simulasi, hasilnya menunjukkan, pada node 50, throughput meningkat sebesar 12,374%. Untuk 100 node, peningkatan sebesar 44.597%. Pada rata-rata average end to end delay , dengan 50 node, nilai EA-SHORT ZRP menurun sebesar 20.063%, 100 node EA-SHORT ZRP menurun sebesar 8.375%. Hasil PDR pada EA-SHORT ZRP dengan 50 node meningkat 0,545%, dan untuk EA-SHORT ZRP 100 node meningkat sebesar 21,301%


Sign in / Sign up

Export Citation Format

Share Document