scholarly journals WSN Based Flood Estimations and Early Cautioning System using IoT

Wireless Sensor Networks (WSN ) provides virtual layer where knowledge regarding actual world can be retrieved by any computational arrangement as these operate as digital skin. These are irreplaceable possessions used for comprehending ideas of IoT as they are used to gather information about physical phenomenon. IoT offers virtual interpretation through Internet Protocol towards a huge variation of real-life objects from buses to saucer, from building to trees in woods. Its appeal is the universal widespread access to the status and location of anything we may be interested in. The Internet of Things (IoT) is the network of physical objects, devices, vehicles, buildings and other items which are embedded with electronics, software, sensors, and network connectivity, which enables these objects to collect and exchange data. WSNs are combined into the “IoT”, where sensor nodes join the Internet vigorously and use it to collaborate and carry out their tasks. Wireless sensor networks (WSN) are well suited for longterm environmental data acquisition for IoT representation. Weather conditions monitoring is made by gathering quantifiable information regarding prevailing condition of atmospheric procedure to venture how will it progress in that location

Internet of things is defined in many ways is an internet technology connected to devices, machines and tools by the means of wireless technology, such as connected homes, cities, cars and roads, etc. The IoT is the platform to connect physical objects that contain built-in technology to interact and sends or communicate with their internal blocks or external environment. Nearly one trillion devices are internet connected devices which are available with mobile applications, linking all these connected things. Billions of devices are being communicated all the way though out the world over network protocols, in 2010 which was made by an IoT. Daily around 12.5 billion things or devices are interacting with internet. Since past two decades many researchers and industries were attracted towards IoT because of its reliability. If domestic appliances like Oven, Refrigerator, Air conditioner, Geezer, Smart TV are connected in a network, they all work together in association to provide an ideal service as an entire, not as a collection of independently working devices. IoT is a powerful tool which is used in many ways in the development of real-world applications and services, for example building a smart residence where light should ON when the person enters into the room at night time, windows can be closed automatically when it rains, and automatically windows will be open if any leakage of gas. Wireless Sensor Networks are included into the “Internet of Things”, where sensor nodes are connected to the Internet vigorously, and use it to act as a team and complete their action. Wireless Sensor Networks are well apt for long-term environmental data acquirement for IoT representation. In this paper, we provide the information on designing challenges on wireless sensor networks for an IoT application.. This paper presents an overview on an IoT, functional design of WSN for IoT application, details an architecture of IoT and related key issues.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Khalid Mahmood ◽  
Muhammad Amir Khan ◽  
Mahmood ul Hassan ◽  
Ansar Munir Shah ◽  
Shahzad Ali ◽  
...  

Wireless sensor networks are envisioned to play a very important role in the Internet of Things in near future and therefore the challenges associated with wireless sensor networks have attracted researchers from all around the globe. A common issue which is well studied is how to restore network connectivity in case of failure of single or multiple nodes. Energy being a scarce resource in sensor networks drives all the proposed solutions to connectivity restoration to be energy efficient. In this paper we introduce an intelligent on-demand connectivity restoration technique for wireless sensor networks to address the connectivity restoration problem, where nodes utilize their transmission range to ensure the connectivity and the replacement of failed nodes with their redundant nodes. The proposed technique helps us to keep track of system topology and can respond to node failures effectively. Thus our system can better handle the issue of node failure by introducing less overhead on sensor node, more efficient energy utilization, better coverage, and connectivity without moving the sensor nodes.


2020 ◽  
pp. 1286-1301
Author(s):  
Tata Jagannadha Swamy ◽  
Garimella Rama Murthy

Wireless Sensor Nodes (WSNs) are small in size and have limited energy resources. Recent technological advances have facilitated widespread use of wireless sensor networks in many real world applications. In real life situations WSN has to cover an area or monitor a number of nodes on a plane. Sensor node's coverage range is proportional to their cost, as high cost sensor nodes have higher coverage ranges. The main goal of this paper is to minimize the node placement cost with the help of uniform and non-uniform 2D grid planes. Authors propose a new algorithm for data transformation between strongly connected sensor nodes, based on graph theory.


2019 ◽  
Vol 16 (2) ◽  
pp. 496-502
Author(s):  
N. Vadivelan ◽  
A. Ramamurthy ◽  
P. Padmaja

Wireless sensor networks were organized with the collections of sensor nodes for the purpose of monitoring physical phenomenon such as temperature, humidity and seismic events, etc., in the real world environments where the manual human access is not possible. The major tasks of this type of networks are to route the information to sink systems in the sensor network from sensor nodes. Sensors are deployed in a large geographical area where human cannot enter such as volcanic eruption or under the deep sea. Hence sensors are not rechargeable and limited with battery backup; it is very complicated to provide the continuous service of sending information to sink systems from sensor nodes. To overcome the drawback of limited battery power, this paper proposes the concept of minimizing energy consumption with the help of neural networks. The modified form of HRP protocol called energy efficient HRP protocol has been implemented in this paper. Based on this concept, the workload of cluster head is shared by the cluster isolation node in order to increase the lifetime of the cluster head node. Also cluster monitoring node is introduced to reduce the re-clustering process. The implementation procedure, algorithm, results and conclusions were proved that the proposed concept is better than the existing protocols.


Author(s):  
Nejla Rouissi ◽  
Hamza Gharsellaoui ◽  
Sadok Bouamama

Wireless sensor networks (WSNs) play a central role in the Internet of Things (IoT). It consists of small-size sensor nodes connected to the internet through gateways providing content rich information. So, the traffic transmission between sensor nodes over radio links requires highly bandwidth and needs to ensure the reliability of the data. Therefore, providing safe communications of sensor data over wireless communication channel plays an essential role. Thus, the important issue on wireless sensor networks is to find an optimal schema that ensuring energy efficiency together with the security. In contrast, implementing traditional cryptographic algorithms is not very well suited for WSNs nodes. In this article, a novel combination of spread spectrum into watermarking scheme is presented. This watermarking schema based on direct-frequency-time spread spectrum secures data communication against jamming and falsification to ensure data integrity and increases resistance to interference at the same time ensures the energy efficiency.


Nowadays Wireless Sensor Networks are using Internet-of-Thing (IoT) technology-based nodes because of the wide usance and cost effectiveness. Many of the Wireless sensor nodes are battery powered devices with limited computational and communication resources. The algorithm of the conventional wireless sensor networks are designed for small closed group network communications with better power management and reasonable security strategies. When using IoT based Wireless sensor networks, the nodes are used to communicate with the internet, where there is a need for more secured algorithm. The internet protocols are having powerful security authentication systems those require more computational resources, thus they can drain a battery operated little wireless sensor node. This work is indented to introduce a legacy power-security balanced algorithm to use in the IoT based Wireless Sensor Network environments. Proxy Mobile Internet Protocol version 6 (PMIPv6) is selected as the base protocol in which the proposed security authentication mechanism is used instead of inbuilt Diffie-Hellman authentication scheme. A customized Media Access Control (MAC) address-based session key initialization procedure along with seed based random number session key update mechanism is proposed and verified in this work.


Author(s):  
G. Jaspher Willsie Kathrine ◽  
C. Willson Joseph

Wireless sensor network (WSN) comprises sensor nodes that have the capability to sense and compute. Due to their availability and minimal cost compared to traditional networks, WSN is used broadly. The need for sensor networks increases quickly as they are more likely to experience security attacks. There are many attacks and vulnerabilities in WSN. The sensor nodes have issues like limited resources of memory and power and undependable communication medium, which is further complicated in unattended environments, secure communication, and data transmission issues. Due to the complexity in establishing and maintaining the wireless sensor networks, the traditional security solutions if implemented will prove to be inefficient for the dynamic nature of the wireless sensor networks. Since recent times, the advance of smart cities and everything smart, wireless sensor nodes have become an integral part of the internet of things and their related paradigms. This chapter discusses the known attacks, vulnerabilities, and countermeasures existing in wireless sensor networks.


Author(s):  
Mohammed Baqer ◽  
Luisella Balbis

Background and Objective: Wireless Sensor Networks (WSN) are one of the most important elements in the Internet of Things (IoT) paradigm. It is envisaged that WSNs will seamlessly bridge the physical world with the Internet resulting in countless IoT applications in smart cities, wearable devices, smart grids, smart retails amongst others. It is necessary, however, to consider that sensing, processing and communicating large amounts of sensor data is an energy-demanding tasks. Recharging or replacing those battery-powered sensor nodes deployed in inaccessible locations is generally a tedious and time-consuming task. As a result, energy efficient approaches for WSN need to be devised in order to prolong the longevity of the network. Methods: In this paper, we present an approach that reduces energy consumption by controlling the sampling rate and the number of actively communicating nodes. The proposed approach applies compressive sensing to reduce the sampling rate and a statistical approach to decrease the sample size of sensor nodes. Results and Conclusion: The proposed approach is expected to significantly increase the lifetime of the network whilst maintaining the event detection accuracy.


2017 ◽  
Vol 7 (1.2) ◽  
pp. 27
Author(s):  
P. Harini

WSNs (Wireless Sensor Networks) comprise a large number of small, inexpensive, low power and memory constrained sensing devices (called sensor nodes) that are densely deployed to measure a given physical phenomenon. Since WSNs are commonly deployed in a hostile and unattended environment, it is easy for an adversary to physically capture one or more legitimate sensor nodes, re-program and re- deploy them in the network. As a result, the adversary becomes able to deploy several identical copies of physically captured nodes in the network in order to perform illegitimate activities. This type of attack is referred to as Node Replication Attack or Clone Node Attack. By launching node replication attack, an adversary can easily get control on the network which consequently is the biggest threat to confidentiality, integrity and availability of data and services. Thus, detection and prevention of node replication attack in WSNs has become an active area of research and to date more than two dozen schemes have been proposed, which address this issue. In this paper, we present a comprehensive review, classification and comparative analysis of twenty five of these schemes which help to detect and/or prevent node replication attack in WSNs.


In underwater Wireless Sensor Networks (UWSN) the node mobility is higher as the nodes drift with the water so identifying the exact location of the nodes is a challenging task. Terrestrial WSN use Global Positioning System (GPS) to locate the nodes, but the same cannot be applied for UWSN as they do not propagate under water. Underwater uses acoustic channel for communication which suffers from low bandwidth, high propagation delay, high bit error rate, high node mobility and variable sound speed which makes localization a challenging task. Hence there is an evolving requirement for energy efficient localization algorithm. To overcome these problems we propose an Energy Efficient Cluster Based Localization Algorithm (EECBLA) to minimize the energy utilization and identify an accurate location of the sensor nodes. EECBLA is a cluster based localization protocol where the GPS enabled high power anchor nodes are utilized to estimate the location of the un localized sensor nodes. To improve the localization accuracy it is necessary to improve the network connectivity. Network connectivity can be improved by increasing the lifetime of the sensor nodes. EECBLA proposes an energy efficient localization scheme where the node operates in active and sleep mode to efficiently utilize the available energy. In this research work we take a sample example and demonstrate how the location is estimated through TOA and Euclidean distance. Accuracy of TOA is measured as 8.36, 4.76, 13.21, 14.85, 16.26 and 3.60. The average estimated localization error of EECBLA is around 4m to 6m. EECBLA localization error is compared with other localization algorithms like 3DUL whose average localization error is 5m to 10m, SDMA whose average localization error is around 24% and localization error of Hybrid RSS ranges from 4.69m to 15.85m. When compared with these methodologies there is a decrease in localization error by 3%, and the increase in accuracy by 5% in EECBLA protocol


Sign in / Sign up

Export Citation Format

Share Document