Attacks, Vulnerabilities, and Their Countermeasures in Wireless Sensor Networks

Author(s):  
G. Jaspher Willsie Kathrine ◽  
C. Willson Joseph

Wireless sensor network (WSN) comprises sensor nodes that have the capability to sense and compute. Due to their availability and minimal cost compared to traditional networks, WSN is used broadly. The need for sensor networks increases quickly as they are more likely to experience security attacks. There are many attacks and vulnerabilities in WSN. The sensor nodes have issues like limited resources of memory and power and undependable communication medium, which is further complicated in unattended environments, secure communication, and data transmission issues. Due to the complexity in establishing and maintaining the wireless sensor networks, the traditional security solutions if implemented will prove to be inefficient for the dynamic nature of the wireless sensor networks. Since recent times, the advance of smart cities and everything smart, wireless sensor nodes have become an integral part of the internet of things and their related paradigms. This chapter discusses the known attacks, vulnerabilities, and countermeasures existing in wireless sensor networks.

Author(s):  
Mohammed Baqer ◽  
Luisella Balbis

Background and Objective: Wireless Sensor Networks (WSN) are one of the most important elements in the Internet of Things (IoT) paradigm. It is envisaged that WSNs will seamlessly bridge the physical world with the Internet resulting in countless IoT applications in smart cities, wearable devices, smart grids, smart retails amongst others. It is necessary, however, to consider that sensing, processing and communicating large amounts of sensor data is an energy-demanding tasks. Recharging or replacing those battery-powered sensor nodes deployed in inaccessible locations is generally a tedious and time-consuming task. As a result, energy efficient approaches for WSN need to be devised in order to prolong the longevity of the network. Methods: In this paper, we present an approach that reduces energy consumption by controlling the sampling rate and the number of actively communicating nodes. The proposed approach applies compressive sensing to reduce the sampling rate and a statistical approach to decrease the sample size of sensor nodes. Results and Conclusion: The proposed approach is expected to significantly increase the lifetime of the network whilst maintaining the event detection accuracy.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 218
Author(s):  
Ala’ Khalifeh ◽  
Khalid A. Darabkh ◽  
Ahmad M. Khasawneh ◽  
Issa Alqaisieh ◽  
Mohammad Salameh ◽  
...  

The advent of various wireless technologies has paved the way for the realization of new infrastructures and applications for smart cities. Wireless Sensor Networks (WSNs) are one of the most important among these technologies. WSNs are widely used in various applications in our daily lives. Due to their cost effectiveness and rapid deployment, WSNs can be used for securing smart cities by providing remote monitoring and sensing for many critical scenarios including hostile environments, battlefields, or areas subject to natural disasters such as earthquakes, volcano eruptions, and floods or to large-scale accidents such as nuclear plants explosions or chemical plumes. The purpose of this paper is to propose a new framework where WSNs are adopted for remote sensing and monitoring in smart city applications. We propose using Unmanned Aerial Vehicles to act as a data mule to offload the sensor nodes and transfer the monitoring data securely to the remote control center for further analysis and decision making. Furthermore, the paper provides insight about implementation challenges in the realization of the proposed framework. In addition, the paper provides an experimental evaluation of the proposed design in outdoor environments, in the presence of different types of obstacles, common to typical outdoor fields. The experimental evaluation revealed several inconsistencies between the performance metrics advertised in the hardware-specific data-sheets. In particular, we found mismatches between the advertised coverage distance and signal strength with our experimental measurements. Therefore, it is crucial that network designers and developers conduct field tests and device performance assessment before designing and implementing the WSN for application in a real field setting.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2417
Author(s):  
Andrzej Michalski ◽  
Zbigniew Watral

This article presents the problems of powering wireless sensor networks operating in the structures of the Internet of Things (IoT). This issue was discussed on the example of a universal end node in IoT technology containing RFID (Radio Frequency Identification) tags. The basic methods of signal transmission in these types of networks are discussed and their impact on the basic requirements such as range, transmission speed, low energy consumption, and the maximum number of devices that can simultaneously operate in the network. The issue of low power consumption of devices used in IoT solutions is one of the main research objects. The analysis of possible communication protocols has shown that there is a possibility of effective optimization in this area. The wide range of power sources available on the market, used in nodes of wireless sensor networks, was compared. The alternative possibilities of powering the network nodes from Energy Harvesting (EH) generators are presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Mingxin Yang ◽  
Jingsha He ◽  
Yuqiang Zhang

Due to limited resources in wireless sensor nodes, energy efficiency is considered as one of the primary constraints in the design of the topology of wireless sensor networks (WSNs). Since data that are collected by wireless sensor nodes exhibit the characteristics of temporal association, data fusion has also become a very important means of reducing network traffic as well as eliminating data redundancy as far as data transmission is concerned. Another reason for data fusion is that, in many applications, only some of the data that are collected can meet the requirements of the sink node. In this paper, we propose a method to calculate the number of cluster heads or data aggregators during data fusion based on the rate-distortion function. In our discussion, we will first establish an energy consumption model and then describe a method for calculating the number of cluster heads from the point of view of reducing energy consumption. We will also show through theoretical analysis and experimentation that the network topology design based on the rate-distortion function is indeed more energy-efficient.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Jun Huang ◽  
Liqian Xu ◽  
Cong-cong Xing ◽  
Qiang Duan

The design of wireless sensor networks (WSNs) in the Internet of Things (IoT) faces many new challenges that must be addressed through an optimization of multiple design objectives. Therefore, multiobjective optimization is an important research topic in this field. In this paper, we develop a new efficient multiobjective optimization algorithm based on the chaotic ant swarm (CAS). Unlike the ant colony optimization (ACO) algorithm, CAS takes advantage of both the chaotic behavior of a single ant and the self-organization behavior of the ant colony. We first describe the CAS and its nonlinear dynamic model and then extend it to a multiobjective optimizer. Specifically, we first adopt the concepts of “nondominated sorting” and “crowding distance” to allow the algorithm to obtain the true or near optimum. Next, we redefine the rule of “neighbor” selection for each individual (ant) to enable the algorithm to converge and to distribute the solutions evenly. Also, we collect the current best individuals within each generation and employ the “archive-based” approach to expedite the convergence of the algorithm. The numerical experiments show that the proposed algorithm outperforms two leading algorithms on most well-known test instances in terms of Generational Distance, Error Ratio, and Spacing.


Author(s):  
Mrutyunjay Rout ◽  
Dr. Harish Kumar Verma ◽  
Subhashree Das

Wireless sensor networks (WSNs) have gained worldwide attention in recent years, particularly with the rapid progress in Micro-Electro-Mechanical Systems (MEMS) technology which has facilitated the development of smart sensors. These sensors are small, with limited processing and computing resources, and they are inexpensive compared to traditional sensors. These sensor nodes can sense, measure, and gather information from the environment and, based on some local decision process, they can transmit the sensed data to the user. WSNs are large networks made of a numerous number of sensor nodes with sensing, computation, and wireless communication capabilities. In present work we provide a brief summary of the state-ofthe- art in wireless sensor networks, investigate the feasibility of indoor environment monitoring using crossbow wireless sensor nodes. Here we used nesC programming language and TinyOS operating system for programming Crossbow sensor nodes and LabVIEW GUI is used for displaying different indoor environmental parameters such as temperature, humidity and light acquired from different Wireless sensor nodes. These sensor readings can help building administrators to monitor the physical conditions of the environment in a building for creating optimized energy usage.


2020 ◽  
pp. 1286-1301
Author(s):  
Tata Jagannadha Swamy ◽  
Garimella Rama Murthy

Wireless Sensor Nodes (WSNs) are small in size and have limited energy resources. Recent technological advances have facilitated widespread use of wireless sensor networks in many real world applications. In real life situations WSN has to cover an area or monitor a number of nodes on a plane. Sensor node's coverage range is proportional to their cost, as high cost sensor nodes have higher coverage ranges. The main goal of this paper is to minimize the node placement cost with the help of uniform and non-uniform 2D grid planes. Authors propose a new algorithm for data transformation between strongly connected sensor nodes, based on graph theory.


Sign in / Sign up

Export Citation Format

Share Document