scholarly journals An Novel Framework For Content Based Image Retrieval With Quality Assessment System using Optimal Deep Convolution Neural Network

Content based image retrieval (CBIR) models become popular for retrieving images connected to the query image (QI) from massive dataset. Feature extraction process in CBIR plays a vital role as it affects the system’s performance. This paper is focused on the design of deep learning (DL) model for feature extraction based CBIR model. The presented model utilizes a ResNet50 with co-occurrence matrix (RCM) model for CBIR. Here, the ResNet50 model is applied for feature extraction of the QI. Then, the extracted features are placed in the feature repository as a feature vector. The RCM model computes the feature vector for every input image and compares it with the features present in the repository. Then, the images with maximum resemblance will be retrieved from the dataset. In addition, the resemblance between the feature vectors is determined by the use of co-occurrence matrix subtraction process. Besides, structural similarity (SSIM) measure is applied for the validation of the similarity among the images. A comprehensive results analysis takes place by the use of Corel 10K dataset. The experimental outcome indicated the superiority of the RCM model with respect to precision, recall and SSIM.

2018 ◽  
Vol 1 (2) ◽  
pp. 73-78
Author(s):  
I Made Sukafona ◽  
Emmy Febriani Thalib

Content Based Image Retrieval (CBIR) is a research cluster that is very important to overcome problems related to the image search process. The development of internet technology and data communication has caused the number of multimedia images currently circulating to be very high. This study took the Color Moment method to carry out the feature extraction process. Before the feature extraction process, a segmentation process was carried out to separate the background image and the foreground image. Next, each background and front image is stored in the database. Method performance measurement is done by calculating the value of precision and recall. The test image used is the Wang dataset consisting of ten image classes. The test results show the level of recall or completeness of the images that were found to have increased significantly after using the K-Means segmentation process. But a high enough recall value decreases the value of precision or the comparison of true images with the image found overall. Precision values ​​decrease when compared to the CBIR method without running the K-Means segmentation.


Author(s):  
Rakesh Asery ◽  
Ramesh Kumar Sunkaria ◽  
Puneeta Marwaha ◽  
Lakhan Dev Sharma

In this chapter authors introduces content-based image retrieval systems and compares them over a common database. For this, four different content-based local binary descriptors are described with and without Gabor transform in brief. Further Nth derivative descriptor is calculated using (N-1)th derivative, based on rotational and multiscale feature extraction. At last the distance based query image matching is used to find the similarity with database. The performance in terms of average precision, average retrieval rate, different orders of derivatives in the form of average retrieval rate, and length of feature vector v/s performance in terms of time have been calculated. For this work a comparative experiment has been conducted using the Ponce Group images on seven classes (each class have 100 images). In addition, the performance of the all descriptors have been analyzed by combining these with the Gabor transform.


2011 ◽  
Vol 61 (5) ◽  
pp. 415 ◽  
Author(s):  
Madasu Hanmandlu ◽  
Anirban Das

<p>Content-based image retrieval focuses on intuitive and efficient methods for retrieving images from databases based on the content of the images. A new entropy function that serves as a measure of information content in an image termed as 'an information theoretic measure' is devised in this paper. Among the various query paradigms, 'query by example' (QBE) is adopted to set a query image for retrieval from a large image database. In this paper, colour and texture features are extracted using the new entropy function and the dominant colour is considered as a visual feature for a particular set of images. Thus colour and texture features constitute the two-dimensional feature vector for indexing the images. The low dimensionality of the feature vector speeds up the atomic query. Indices in a large database system help retrieve the images relevant to the query image without looking at every image in the database. The entropy values of colour and texture and the dominant colour are considered for measuring the similarity. The utility of the proposed image retrieval system based on the information theoretic measures is demonstrated on a benchmark dataset.</p><p><strong>Defence Science Journal, 2011, 61(5), pp.415-430</strong><strong><strong>, DOI:http://dx.doi.org/10.14429/dsj.61.1177</strong></strong></p>


2018 ◽  
Vol 7 (2.31) ◽  
pp. 181
Author(s):  
K Srinivasa Reddy ◽  
R Anandan ◽  
K Kalaivani ◽  
P Swaminathan

Content Based Image Retrieval (CBIR) is an important and widely used technique for retrieval of different kinds of images from large database. Collection of information in database are available in different formats such as text, image, graph, chart etc. Here, our focus is on information which is available in the form of images. Searching and retrieval of the image from a large amount of database is difficult problem because it uses the image visual information such as shape, text and color for indexing and representation of an image. For efficient CBIR system, there is a need to develop different kinds of retrieval methods using feature extraction, similarity matching etc. Text Based Image Retrieval systems are used in many hospitals, but for large databases these are inefficient. To solve this problem, CBIR systems are proposed to retrieve matching images from database using automated feature extraction method. At present, medical imaging field finds extensive growth in the generation and evaluation of various types of medical images which are high inconsistency, usually fused and the combination of various minor composition structures. For easy retrieval, need to be development of feature extraction and image classification methods. Different methods are used for different kinds of medical images. The Radiology department and Cardiology department are the largest producers of medical images and the patient abnormal images can be stored with the normal images. CBIR uses query image as input and it retrieves the images, which are similar to the query more efficiently and effectively. This paper provides a comprehensive Survey about CBIR system and its one of the major application in medical domain.  


Author(s):  
SAVITHA SIVAN ◽  
THUSNAVIS BELLA MARY. I

Content-based image retrieval (CBIR) is an active research area with the development of multimedia technologies and has become a source of exact and fast retrieval. The aim of CBIR is to search and retrieve images from a large database and find out the best match for the given query. Accuracy and efficiency for high dimensional datasets with enormous number of samples is a challenging arena. In this paper, Content Based Image Retrieval using various features such as color, shape, texture is made and a comparison is made among them. The performance of the retrieval system is evaluated depending upon the features extracted from an image. The performance was evaluated using precision and recall rates. Haralick texture features were analyzed at 0 o, 45 o, 90 o, 180 o using gray level co-occurrence matrix. Color feature extraction was done using color moments. Structured features and multiple feature fusion are two main technologies to ensure the retrieval accuracy in the system. GIST is considered as one of the main structured features. It was experimentally observed that combination of these techniques yielded superior performance than individual features. The results for the most efficient combination of techniques have also been presented and optimized for each class of query.


2016 ◽  
Vol 850 ◽  
pp. 136-143 ◽  
Author(s):  
Mehmet Ayan ◽  
O. Ayhan Erdem ◽  
Hasan Şakir Bilge

Content-based image retrieval (CBIR) system becomes a hot topic in recent years. CBIR system is the retrieval of images based on visual features. CBIR system based on a single feature has a low performance. Therefore, in this paper a new content based image retrieval method using color and texture features is proposed to improve performance. In this method color histogram and color moment are used for color feature extraction and grey level co-occurrence matrix (GLCM) is used for texture feature extraction. Then all extracted features are integrated for image retrieval. Finally, color histogram, color moment, GLCM and proposed methods are tested respectively. As a result, it is observed that proposed method which integrates color and texture features gave better results than the other methods used independently. To demonstrate the proposed system is successful, it was compared with existing CBIR systems. The proposed method showed superior performance than other comparative systems.


Author(s):  
Yinghui Zhang ◽  
Fengyuan Zhang ◽  
Yantong Cui ◽  
Ruoci Ning

Because of the numerous application of Content-based image retrieval (CBIR) system in various areas, it has always remained a topic of keen interest by the researchers. Fetching of the most similar image from the complete repository by comparing it to the input image in the minimum span of time is the main task of the CBIR. The purpose of the CBIR can vary from different types of requirements like a diagnosis of the illness by the physician, crime investigation, product recommendation by the e-commerce companies, etc. In the present work, CBIR is used for finding the similar patients having Breast cancer. Gray-Level Co-Occurrence Matrix along with histogram and correlation coefficient is used for creating CBIR system. Comparing the images of the area of interest of a present patient with the complete series of the image of a past patient can help in early diagnosis of the disease. CBIR is so much effective that even when the symptoms are not shown by the body the disease can be diagnosed from the sample images.


With tremendous growth in social media and digital technologies, generation, storing and transfer of huge amount of information over the internet is on the rise. Images or visual mode of communication have been prevailing and widely accepted as a mode of communication since ages. And with the growth of internet, the rate at which images are generated is growing exponentially. But the methods used to retrieve images are still very slow and inefficient, compared to the rate of increase in image databases. To cope up with this explosive increase in images, this information age has seen huge research advancement in Content Based Image Retrieval (CBIR). CBIR systems provide a way of utilizing the 3 major ways in which content is portrayed in images, those are shape, texture and color. In CBIR system, features are extracted from query image and similarity is found with features stored in database for retrieval. This provides an objective way of image retrieval, which is more efficient compared to subjective human annotation. Application specific CBIR systems have been developed and perform really well, but Generic CBIR systems are still under developed. Block Truncation Coding (BTC) has been chosen as a feature extractor. BTC applied directly on input image provides color content-based features of image and BTC applied after applying LBP on the image provide texture content-based features of image. Previous work consists of either color, shape or texture, but usage of more than one descriptor is still in research and might give better performance. The paper presents framework for color and texture feature fusion in content-based image retrieval using block truncation coding with color spaces. Experimentation is carried out on Wang Dataset of 1000 images consisting of 10 classes. Each class has 100 images in it. Obtained results have shown performance improvement using fusion of BTC extracted color features and texture features extracted with BTC applied on Local Binary Patterns (LBP). Conversion of color space from RGB to LUV is done using Kekre's LUV.


2020 ◽  
Vol 38 (5A) ◽  
pp. 719-727
Author(s):  
Beshaier A. Abdulla ◽  
Yossra H. Ali ◽  
Nuha J. Ibrahim

In the last years, many types of research have introduced different methods and techniques for a correct and reliable image retrieval system. The goal of this paper is a comparison study between two different methods which are the Grey level co-occurrence matrix and the Hu invariants moments, and this study is done by building up an image retrieval system employing each method separately and comparing between the results. The Euclidian distance measure is used to compute the similarity between the query image and database images. Both systems are evaluated according to the measures that are used in detection, description, and matching fields which are precision, recall, and accuracy, and addition to that mean square error (MSE) and structural similarity index (SSIM) is used.  And as it shows from the results the Grey level co-occurrence matrix (GLCM) had outstanding and better results from the Hu invariants moment method.


2020 ◽  
Vol 13 (5) ◽  
pp. 930-941 ◽  
Author(s):  
Sandeep D. Pande ◽  
Manna S.R. Chetty

Background: Image retrieval has a significant role in present and upcoming usage for different image processing applications where images within a desired range of similarity are retrieved for a query image. Representation of image feature, accuracy of feature selection, optimal storage size of feature vector and efficient methods for obtaining features plays a vital role in Image retrieval, where features are represented based on the content of an image such as color, texture or shape. In this work an optimal feature vector based on control points of a Bezier curve is proposed which is computation and storage efficient. Aim: To develop an effective and storage, computation efficient framework model for retrieval and classification of plant leaves. Objective: The primary objective of this work is developing a new algorithm for control point extraction based on the global monitoring of edge region. This observation will bring a minimization in false feature extraction. Further, computing a sub clustering feature value in finer and details component to enhance the classification performance. Finally, developing a new search mechanism using inter and intra mapping of feature value in selecting optimal feature values in the estimation process. Methods: The work starts with the pre-processing stage that outputs the boundary coordinates of shape present in the input image. Gray scale input image is first converted into binary image using binarization then, the curvature coding is applied to extract the boundary of the leaf image. Gaussian Smoothening is then applied to the extracted boundary to remove the noise and false feature reduction. Further interpolation method is used to extract the control points of the boundary. From the extracted control points the Bezier curve points are estimated and then Fast Fourier Transform (FFT) is applied on the curve points to get the feature vector. Finally, the K-NN classifier is used to classify and retrieve the leaf images. Results: The performance of proposed approach is compared with the existing state-of-the-artmethods (Contour and Curve based) using the evaluation parameters viz. accuracy, sensitivity, specificity, recall rate, and processing time. Proposed method has high accuracy with acceptable specificity and sensitivity. Other methods fall short in comparison to proposed method. In case of sensitivity and specificity Contour method out performs proposed method. But in case accuracy and specificity proposed method outperforms the state-of-the-art methods. Conclusion: This work proposed a linear coding of Bezier curve control point computation for image retrieval. This approach minimizes the processing overhead and search delay by reducing feature vectors using a threshold-based selection approach. The proposed approach has an advantage of distortion suppression and dominant feature extraction simultaneously, minimizing the effort of additional filtration process. The accuracy of retrieval for the developed approach is observed to be improved as compared to the tangential Bezier curve method and conventional edge and contour-based coding. The approach signifies an advantage in low resource overhead in computing shape feature.


Sign in / Sign up

Export Citation Format

Share Document