scholarly journals Improving Intrusion Detection System using an Extreme Learning Machine Algorithm

An Intrusion Detection System (IDS) is a system, that checks the network or data for abnormal actions and when such activity is discovered it issues an alert. Numerous IDS techniques are in use these days but one major problem with all of them is their performance. Various works have been done on this issue using support vector machine and multilayer perceptron. Supervised learning models such as support vector machines with related learning algorithms are used to analyze the data which is used for regression analysis and also classification. The IDS is used in analyzing big data as there is huge traffic which has to be analyzed to check for suspicious activities, and also be successful in doing so. Hence, an efficient and fast classification algorithm is required. Machine learning techniques such as neural networks and extreme machine learning are used. Both of these techniques are highly regarded and are considered one of the best techniques. Extreme learning machines are feed forward neural networks which have one hidden layer and no back propagation used for classification. Once the intrusion is detected using IDS through ELM then we are also going to detect the type of intrusion using the Random Forest Technique (Multi class classification) efficiently with a higher rate of accuracy and precision. The NSL_KDD dataset which is very well-known used for the training as well as testing of these IDS algorithms. This work determines that compared to artificial neural network and logistic regression extreme learning machines provide a much better rate of intrusion detection, which is 93.96% and is also proven to be more efficient in terms of execution time of 38 seconds

Author(s):  
Iqbal H. Sarker ◽  
Yoosef B. Abushark ◽  
Fawaz Alsolami ◽  
Asif Irshad Khan

Cyber security has recently received enormous attention in today’s security concerns, due to the popularity of the Internet-of-Things (IoT), the tremendous growth of computer networks, and the huge number of relevant applications. Thus, detecting various cyber-attacks or anomalies in a network and building an effective intrusion detection system that performs an essential role in today’s security is becoming more important. Artificial intelligence, particularly machine learning techniques, can be used for building such a data-driven intelligent intrusion detection system. In order to achieve this goal, in this paper, we present an Intrusion Detection Tree (“IntruDTree”) machine-learning-based security model that first takes into account the ranking of security features according to their importance and then build a tree-based generalized intrusion detection model based on the selected important features. This model is not only effective in terms of prediction accuracy for unseen test cases but also minimizes the computational complexity of the model by reducing the feature dimensions. Finally, the effectiveness of our IntruDTree model was examined by conducting experiments on cybersecurity datasets and computing the precision, recall, fscore, accuracy, and ROC values to evaluate. We also compare the outcome results of IntruDTree model with several traditional popular machine learning methods such as the naive Bayes classifier, logistic regression, support vector machines, and k-nearest neighbor, to analyze the effectiveness of the resulting security model.


2013 ◽  
Vol 7 (4) ◽  
pp. 37-52
Author(s):  
Srinivasa K G

Increase in the number of network based transactions for both personal and professional use has made network security gain a significant and indispensable status. The possible attacks that an Intrusion Detection System (IDS) has to tackle can be of an existing type or of an entirely new type. The challenge for researchers is to develop an intelligent IDS which can detect new attacks as efficiently as they detect known ones. Intrusion Detection Systems are rendered intelligent by employing machine learning techniques. In this paper we present a statistical machine learning approach to the IDS using the Support Vector Machine (SVM). Unike conventional SVMs this paper describes a milti model approach which makes use of an extra layer over the existing SVM. The network traffic is modeled into connections based on protocols at various network layers. These connection statistics are given as input to SVM which in turn plots each input vector. The new attacks are identified by plotting them with respect to the trained system. The experimental results demonstrate the lower execution time of the proposed system with high detection rate and low false positive number. The 1999 DARPA IDS dataset is used as the evaluation dataset for both training and testing. The proposed system, SVM NIDS is bench marked with SNORT (Roesch, M. 1999), an open source IDS.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Abhijit Dnyaneshwar Jadhav ◽  
Vidyullatha Pellakuri

AbstractNetwork security and data security are the biggest concerns now a days. Every organization decides their future business process based on the past and day to day transactional data. This data may consist of consumer’s confidential data, which needs to be kept secure. Also, the network connections when established with the external communication devices or entities, a care should be taken to authenticate these and block the unwanted access. This consists of identification of the malicious connection nodes and identification of normal connection nodes. For that, we use a continuous monitoring of the network input traffic to recognize the malicious connection request called as intrusion and this type of monitoring system is called as an Intrusion detection system (IDS). IDS helps us to protect our network and data from insecure and malicious network connections. Many such systems exists in the real time scenario, but they have critical issues of performance like accuracy and efficiency. These issues are addressed as a part of this research work of IDS using machine learning techniques and HDFS. The TP-IDS is designed in two phases for increasing accuracy. In phase I of TP-IDS, Support Vector Machine (SVM) and k Nearest Neighbor (kNN) are used. In phase II of TP-IDS, Decision Tree (DT) and Naïve Bayes (NB) are used, where phase II is the validation phase of the system for increasing accuracy. Also, both the phases are having Hadoop distributed file system underlying data storage and processing architecture, which allows parallel processing to increase the speed of the system and hence achieve the efficiency in TP-IDS.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 754 ◽  
Author(s):  
Iqbal H. Sarker ◽  
Yoosef B. Abushark ◽  
Fawaz Alsolami ◽  
Asif Irshad Khan

Cyber security has recently received enormous attention in today’s security concerns, due to the popularity of the Internet-of-Things (IoT), the tremendous growth of computer networks, and the huge number of relevant applications. Thus, detecting various cyber-attacks or anomalies in a network and building an effective intrusion detection system that performs an essential role in today’s security is becoming more important. Artificial intelligence, particularly machine learning techniques, can be used for building such a data-driven intelligent intrusion detection system. In order to achieve this goal, in this paper, we present an Intrusion Detection Tree (“IntruDTree”) machine-learning-based security model that first takes into account the ranking of security features according to their importance and then build a tree-based generalized intrusion detection model based on the selected important features. This model is not only effective in terms of prediction accuracy for unseen test cases but also minimizes the computational complexity of the model by reducing the feature dimensions. Finally, the effectiveness of our IntruDTree model was examined by conducting experiments on cybersecurity datasets and computing the precision, recall, fscore, accuracy, and ROC values to evaluate. We also compare the outcome results of IntruDTree model with several traditional popular machine learning methods such as the naive Bayes classifier, logistic regression, support vector machines, and k-nearest neighbor, to analyze the effectiveness of the resulting security model.


Author(s):  
N. Ravi ◽  
G. Ramachandran

Recent advancement in technologies such as Cloud, Internet of Things etc., leads to the increase usage of mobile computing. Present day mobile computing are too sophisticated and advancement are reaching great heights. Moreover, the present day mobile network suffers due to external and internal intrusions within and outside networks. The existing security systems to protect the mobile networks are incapable to detect the recent attacks. Further, the existing security system completely depends on the traditional signature and rule based approaches. Recent attacks have the property of not fluctuating its behaviour during attack. Hence, a robust Intrusion Detection System (IDS) is desirable. In order to address the above mentioned issue, this paper proposed a robust IDS using Machine Learning Techniques (MLT). The key of using MLT is to utilize the power of ensembles. The ensembles of classifier used in this paper are Random Forest (RF), KNN, Naïve Bayes (NB), etc. The proposed IDS is experimentally tested and validated using a secure test bed. The experimental results also confirms that the proposed IDS is robust enough to withstand and detect any form of intrusions and it is also noted that the proposed IDS outperforms the state of the art IDS with more than 95% accuracy.


Author(s):  
Sadhana Patidar ◽  
Priyanka Parihar ◽  
Chetan Agrawal

Now-a-days with growing applications over internet increases the security issues over network. Many security applications are designed to cope with such security concerns but still it required more attention to improve speed as well accuracy. With advancement of technologies there is also evolution of new threats or attacks in network. So, it is required to design such detection system that can handle new threats in network. One of the network security tools is intrusion detection system which is used to detect malicious data packets. Machine learning tool is also used to improve efficiency of network-based intrusion detection system. In this paper, an intrusion detection system is proposed with an application of machine learning tools. The proposed model integrates feature reduction, affinity clustering and multilevel Ensemble Support Vector Machine. The proposed model performance is analyzed over two datasets i.e. NSL-KDD and UNSW-NB 15 dataset and achieved approx. 12% of efficiency over other existing work.


Sign in / Sign up

Export Citation Format

Share Document