scholarly journals Odour Based Human Identification and Classification using Neural Networks

2019 ◽  
Vol 8 (2S8) ◽  
pp. 1439-1447

Biometrics permits an individual to be authenticated and identified by computer systems following on a set of verifiable and identifiable data that are precise and unique in nature. This mechanism constitutes a cutting-edge method of identifying an individual since it precisely establishes more explicit and direct connection with humans than mere passwords since biometrics tend to use measurable behavioral and physiological characteristics of human. In this paper, a framework for human identification is proposed distinctively based on specific human odour features. 15 samples of female and male human odour are collected from different age groups, only 15 effective Volatile Organic Compounds (VOCs) are chosen. In this paper, several diverse functions of neural network activation are tested such as Levenberg-Marquardt backpropagation, Gradient descent backpropagation, and Resilient backpropagation. Besides, numerous neural network topologies are tested by means of variety hidden layers and different number of neurons and. Different energy functions were tested TAN- Sigmoid transfer, Linear transfer, and LOG- Sigmoid transfer. Considering the obtained results, employing two hidden layers with more neurons in the hidden layers- to be specific: 15 neurons in every layer- has yielded better accuracy in performance with an accuracy rate of 100%. The unsurpassed framework for algorithm learning to be used for human identification can be backpropagation learning algorithm named the Levenberg-Marquardt. The best function for activation established in this paper is the function of TANSigmoid transfer. The performance accuracy consistency in recognizing human can be enhanced using a big number of study samples.

Author(s):  
Esteban Real ◽  
Alok Aggarwal ◽  
Yanping Huang ◽  
Quoc V. Le

The effort devoted to hand-crafting neural network image classifiers has motivated the use of architecture search to discover them automatically. Although evolutionary algorithms have been repeatedly applied to neural network topologies, the image classifiers thus discovered have remained inferior to human-crafted ones. Here, we evolve an image classifier— AmoebaNet-A—that surpasses hand-designs for the first time. To do this, we modify the tournament selection evolutionary algorithm by introducing an age property to favor the younger genotypes. Matching size, AmoebaNet-A has comparable accuracy to current state-of-the-art ImageNet models discovered with more complex architecture-search methods. Scaled to larger size, AmoebaNet-A sets a new state-of-theart 83.9% top-1 / 96.6% top-5 ImageNet accuracy. In a controlled comparison against a well known reinforcement learning algorithm, we give evidence that evolution can obtain results faster with the same hardware, especially at the earlier stages of the search. This is relevant when fewer compute resources are available. Evolution is, thus, a simple method to effectively discover high-quality architectures.


Author(s):  
Untari Novia Wisesty

The eye state detection is one of various task toward Brain Computer Interface system. The eye state can be read in brain signals. In this paper use EEG Eye State dataset (Rosler, 2013) from UCI Machine Learning Repository Database. Dataset is consisting of continuous 14 EEG measurements in 117 seconds. The eye states were marked as “1” or “0”. “1” indicates the eye-closed and “0” the eye-open state. The proposed schemes use Multi Layer Neural Network with Levenberg Marquardt optimization learning algorithm, as classification method.  Levenberg Marquardt method used to optimize the learning algorithm of neural network, because the standard algorithm has a weak convergence rate. It is need many iterations to have minimum error. Based on the analysis towards the experiment on the EEG dataset, it can be concluded that the proposed scheme can be implemented to detect the Eye State. The best accuracy gained from combination variable sigmoid function, data normalization and number of neurons are 31 (95.71%) for one hidden layer, and 98.912% for two hidden layers with number of neurons are 39 and 47 neurons and linear function.


2013 ◽  
Vol 341-342 ◽  
pp. 856-860
Author(s):  
Hao Ming Yang ◽  
Lan Qing Zhang

Experiment control platform for the neural network decoupling control is constructed for the glass furnace taking heavy oil as fuel. By dual control, the improving Levenberg-Marquardt learning algorithm is discussed in order to improve the learning speed and to satisfy the real control. The neural network decoupling real control based on C-Script language and PLC S7-400 hard system under WINCC is realized with satisfying control results.


2017 ◽  
Vol 9 (2) ◽  
pp. 168781401769047
Author(s):  
Chin-Sheng Chen ◽  
Cheng-Yi Hsu ◽  
Shih-Kang Chen ◽  
Chih-Jer Lin ◽  
Ching-Hao Hsieh ◽  
...  

In this article, a neural network corrector is proposed to correct the image shift, yielding the degradation of three-dimensional image reconstruction, for each slice captured by cone-beam computed tomography simulator. There are 3 degrees of freedom in tube module of simulator; the central point of tube module should be aligned with the central point of detector module to guarantee the accurate image projection. However, the mechanism manufacturing and assembling tolerance will let the above aim cannot be met. Here, a standard kit is made to measure the image shift by 1° step from −10° to 10°. The measure data will be the input training data of proposed neural network corrector, and the corrected translation position will be the output of neural network corrector. The Levenberg–Marquardt learning algorithm adjusts the connected weights and biases of the neural network using a supervised gradient descent method, such that the defined error function can be minimized. To avoid the problem of overfitting and improve the generalized ability of the neural network, Bayesian regularization is added to the Levenberg–Marquardt learning algorithm. After the training of neural network corrector, the different target position commands are fed into the neural network corrector. Then, the corrected data from neural network corrector are fed to be the new position command to verify the image correction performance. Moreover, a phantom kit is made to check the corrected performance of the neural network corrector. Finally, the experimental results verify that the image shift can be reduced by the neural network corrector.


2013 ◽  
Vol 380-384 ◽  
pp. 979-982
Author(s):  
Huang Guo ◽  
Bao Ru Han ◽  
Guo Fang Zhang

This paper presents a fault diagnosis method of BP neural network based on Levenberg-Marquardt learning algorithm. First, the use of principal component analysis to reduce the dimension of the fault sample reduced BP neural network input variables. Then use the Levenberg-Marquardt learning algorithm to adjust the network weights. Levenberg-Marquardt learning algorithm is combination of the Gauss - Newton algorithm and steepest descent algorithm. It has Gauss - Newton algorithm of local convergence and gradient descent algorithm of the global characteristic. So it has higher convergence speed, reduces the training time, to a certain extent, overcomes the problem of traditional BP network convergence speed slow and easy to fall into local minimum point. Simulation results demonstrate the correctness and accuracy of this fault diagnosis method.


2019 ◽  
Vol 6 (2) ◽  
pp. 46 ◽  
Author(s):  
Yar Muhammad ◽  
Daniil Vaino

The purpose of this research study was to explore the possibility to develop a brain-computer interface (BCI). The main objective was that the BCI should be able to recognize brain activity. BCI is an emerging technology which focuses on communication between software and hardware and permitting the use of brain activity to control electronic devices, such as wheelchairs, computers and robots. The interface was developed, and consists of EEG Bitronics, Arduino and a computer; moreover, two versions of the BCIANNET software were developed to be used with this hardware. This BCI used artificial neural network (ANN) as a main processing method, with the Butterworth filter used as the data pre-processing algorithm for ANN. Twelve subjects were measured to collect the datasets. Tasks were given to subjects to stimulate brain activity. The purpose of the experiments was to test and confirm the performance of the developed software. The aim of the software was to separate important rhythms such as alpha, beta, gamma and delta from other EEG signals. As a result, this study showed that the Levenberg–Marquardt algorithm is the best compared with the backpropagation, resilient backpropagation, and error correction algorithms. The final developed version of the software is an effective tool for research in the field of BCI. The study showed that using the Levenberg–Marquardt learning algorithm gave an accuracy of prediction around 60% on the testing dataset.


2013 ◽  
Vol 388 ◽  
pp. 307-311 ◽  
Author(s):  
Nor Azizi Mazalan ◽  
A.A. Malek ◽  
Mazlan A. Wahid ◽  
Musa Mailah ◽  
Aminuddin Saat ◽  
...  

Main steam temperature is one of the most important parameters in coal fired power plant. Main steam temperature is often describe as non-linear and large inertia with long dead time parameters. This paper present main steam temperature modeling method using neural network with Levenberg-Marquardt learning algorithm. The result of the simulation showed that the main steam temperature modeling based on neural network with Levenberg-Marqurdt learning algorithm is able to replicate closely the actual plant behavior. Generator output, main steam flow, main steam pressure and total spraywater flow are proven to be the main parameters affected the behavior of main steam temperature in coal fired power plant.


2020 ◽  
Vol 71 (6) ◽  
pp. 66-74
Author(s):  
Younis M. Younis ◽  
Salman H. Abbas ◽  
Farqad T. Najim ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor

A comparison between artificial neural network (ANN) and multiple linear regression (MLR) models was employed to predict the heat of combustion, and the gross and net heat values, of a diesel fuel engine, based on the chemical composition of the diesel fuel. One hundred and fifty samples of Iraqi diesel provided data from chromatographic analysis. Eight parameters were applied as inputs in order to predict the gross and net heat combustion of the diesel fuel. A trial-and-error method was used to determine the shape of the individual ANN. The results showed that the prediction accuracy of the ANN model was greater than that of the MLR model in predicting the gross heat value. The best neural network for predicting the gross heating value was a back-propagation network (8-8-1), using the Levenberg�Marquardt algorithm for the second step of network training. R = 0.98502 for the test data. In the same way, the best neural network for predicting the net heating value was a back-propagation network (8-5-1), using the Levenberg�Marquardt algorithm for the second step of network training. R = 0.95112 for the test data.


Sign in / Sign up

Export Citation Format

Share Document