scholarly journals Multi-Response Optimization of Process Parameter in Fused Deposition Modelling by Response Surface Methodology

This paper reported on the effect of ambient temperature, layer thickness, and part angle on the surface roughness and dimensional accuracy. The response surface methodology (RSM) was employed by using historical data in the experiment to determine the significant factors and their interactions on the fused deposition modelling (FDM) performance. Three controllable variables namely ambient temperature (30 °C, 45 °C, 60 °C), layer thickness (0.178 mm, 0.267 mm, 0.356 mm) and part angle (22.5°, 45°, 67.5°) have been studied. A total of 29 numbers of experiments had been conducted, including two replications at the center point. The results showed that all the parameter variables have significant effects on the part surface roughness and dimensional accuracy. Layer thickness is the most dominant factors affecting surface roughness. Meanwhile, the ambient temperature was the most dominant in determining part dimensional accuracy. The responses of various factors had been illustrated in the cross-sectional sample analysis. The optimum parameter required for minimum surface roughness and dimensional accuracy was at ambient temperature 30 °C, layer thickness 0.18 mm and part angle 67.38°. The optimization has produced maximum productivity with RaH 3.21 µm, RaV 11.78 µm, and RaS 12.79 µm. Meanwhile, dimensional accuracy height eror 3.21%, width error 3.70% and angle 0.38°

2021 ◽  
Vol 1206 (1) ◽  
pp. 012001
Author(s):  
Umesh Kumar Vates ◽  
Nand Jee Kanu ◽  
Eva Gupta ◽  
Gyanendra Kumar Singh ◽  
Naveen Anand Daniel ◽  
...  

Abstract Rapid prototyping (RP) uses a cycle where a real model is made by explicitly adding material as thin cross-sectional layers. Fused deposition modelling (FDM) 3D printer is being use for synthesis of ABS based bone hammer. Response surface methodology (RSM) based L27 design of experiment were adopted to perform the experiment using four influencing parameters such as layer thickness, infill percentage, orientation and nozzle temperature for the three responses deflection, hardness and weight. Response surface methodology was used for modelling and optimization of considered process parameters. In present investigation, it is evident that bone hammer fabrication process parameters have been optimized on data such as bone hammer weight 19.8091g, hardness 104.5921 BHN, and force of 15 degree deflection 36.0681 N has been produced with RSM prediction with influence of process parameters such as layer thickness 0.250 mm, infill percentage 63.3333, orientation 60 degree, nozzle temperature 240°C.


2019 ◽  
Vol 1 (1) ◽  
pp. 4-7
Author(s):  
Chockalingam Palanisamy ◽  
Natarajan Chinnasamy ◽  
Karthikeyan Muthu

In this research the influencing process parameters on fused deposition modelling of Acrylonitrile Butadiene Styrene (ABS) parts were studied. The two process parameters, layer thickness and model interior fill style are studied. The specimens were built, tests carried out to find out the surface roughness quality of the specimens. The results analyzed using Response Surface Methodology (RSM). The result indicates that the specimen Type 1 with the 0.254mm layer thickness and solid model interior fill style is the best specimen among the types of specimens tested.


2020 ◽  
Vol 26 (9) ◽  
pp. 1535-1554
Author(s):  
Swapnil Vyavahare ◽  
Shailendra Kumar ◽  
Deepak Panghal

Purpose This paper aims to focus on an experimental study of surface roughness, dimensional accuracy and time of fabrication of parts produced by fused deposition modelling (FDM) technique of additive manufacturing. The fabricated parts of acrylonitrile butadiene styrene (ABS) material have pyramidal and conical features. Influence of five process parameters of FDM, namely, layer thickness, wall print speed, build orientation, wall thickness and extrusion temperature is studied on response characteristics. Furthermore, regression models for responses are developed and significant process parameters are optimized. Design/methodology/approach Comprehensive experimental study is performed using response surface methodology. Analysis of variance is used to investigate the influence of process parameters on surface roughness, dimensional accuracy and time of fabrication in both outer pyramidal and inner conical regions of part. Furthermore, a multi-response optimization using desirability function is performed to minimize surface roughness, improve dimensional accuracy and minimize time of fabrication of parts. Findings It is found that layer thickness and build orientation are significant process parameters for surface roughness of parts. Surface roughness increases with increase in layer thickness, while it decreases initially and then increases with increase in build orientation. Layer thickness, wall print speed and build orientation are significant process parameters for dimensional accuracy of FDM parts. For the time of fabrication, layer thickness and build orientation are found as significant process parameters. Based on the analysis, statistical non-linear quadratic models are developed to predict surface roughness, dimensional accuracy and time of fabrication. Optimization of process parameters is also performed using desirability function. Research limitations/implications The present study is restricted to the parts of ABS material with pyramidal and conical features only fabricated on FDM machine with delta configuration. Originality/value From the critical review of literature it is found that some researchers have made to study the influence of few process parameters on surface roughness, dimensional accuracy and time of fabrication of simple geometrical parts. Also, regression models and optimization of process parameters has been performed for simple parts. The present work is focussed on studying all these aspects in complicated geometrical parts with pyramidal and conical features.


2020 ◽  
Author(s):  
Muhammad Salman Mustafa ◽  
Muhammad Qasim Zafar ◽  
Muhammad Arslan Muneer ◽  
Muhammad Arif ◽  
Farrukh Arsalan Siddiqui ◽  
...  

Abstract Fused Deposition Modeling (FDM) is a widely adopted additive manufacturing process to produce complex 3D structures and it is typically used in the fabrication of biodegradable materials e.g. PLA/PHA for biomedical applications. However, FDM as a fabrication process for such material needs to be optimized to enhance mechanical properties. In this study, dogbone and notched samples are printed with the FDM process to determine optimum values of printing parameters for superior mechanical properties. The effect of layer thickness, infill density, and print bed temperature on mechanical properties is investigated by applying response surface methodology (RSM). Optimum printing parameters are identified for tensile and impact strength and an empirical relation has been formulated with response surface methodology (RSM). Furthermore, the analysis of variance (ANOVA) was performed on the experimental results to determine the influence of the process parameters and their interactions. ANOVA results demonstrate that 44.7% infill density, 0.44 mm layer thickness, and 20C° printing temperatures are the optimum values of printing parameters owing to improved tensile and impact strength respectively. The experimental results were found in strong agreement with the predicted theoretical results.


2021 ◽  
pp. 251659842110311
Author(s):  
Shrikrishna Pawar ◽  
Dhananjay Dolas1

Fused deposition modeling (FDM) is one of the most commonly used additive manufacturing (AM) technologies, which has found application in industries to meet the challenges of design modifications without significant cost increase and time delays. Process parameters largely affect the quality characteristics of AM parts, such as mechanical strength and surface finish. This article aims to optimize the parameters for enhancing flexural strength and surface finish of FDM parts. A total of 18 test specimens of polycarbonate (PC)-ABS (acrylonitrile–butadiene–styrene) material are printed to analyze the effect of process parameters, viz. layer thickness, build orientation, and infill density on flexural strength and surface finish. Empirical models relating process parameters with responses have been developed by using response surface regression and further analyzed by analysis of variance. Main effect plots and interaction plots are drawn to study the individual and combined effect of process parameters on output variables. Response surface methodology was employed to predict the results of flexural strength 48.2910 MPa and surface roughness 3.5826 µm with an optimal setting of parameters of 0.14-mm layer thickness and 100% infill density along with horizontal build orientation. Experimental results confirm infill density and build orientation as highly significant parameters for impacting flexural strength and surface roughness, respectively.


2019 ◽  
Vol 25 (7) ◽  
pp. 1169-1186 ◽  
Author(s):  
Ivana Cotabarren ◽  
Camila Andrea Palla ◽  
Caroline Taylor McCue ◽  
Anastasios John Hart

Purpose This paper aims to apply a robust methodology to establish relationships between user-configurable process parameters of commercial desktop stereolithography (SLA) printers and dimensional accuracy of a custom-designed test artifact. Design/methodology/approach A detailed response surface methodology study, Box–Behnken incomplete factorial design of four factors with three levels, was carried out to evaluate process performance of desktop SLA printers. The selected factors were as follows: printing orientation angle in x-direction, printing orientation angle in y-direction, position on build platform in spatial x-coordinate, position on build tray in spatial y-coordinate and layer thickness. The proposed artifact was designed to include 12 feature groups including thin walls, holes, bosses, bridges and overhangs. Two responses were associated with the features: the dimensional deviation according to the designed value and the minimum feature size. Findings Layer thickness was the most significant factor in 70% of the analyzed responses. For example, measurement deviation was reduced about 90% when cylindrical holes were printed with the lowest layer thickness. Further, in many cases, dimensional deviation was minimized for features at the center of the platform, where the beam cures the resin in a straight line. However, at distant positions, accuracy could be improved by compensating for beam deviation by changing the object orientation angle. Originality/value The findings of this study can serve, both generally and specifically, for SLA designers and engineers who wish to optimize printing process variables and feature location to achieve high-dimensional accuracy and further understand the many coupled considerations among part design, build configuration and process performance.


2021 ◽  
Vol 16 (3) ◽  
pp. 319
Author(s):  
Hasdiansah Hasdiansah ◽  
Sugiyarto Sugiyarto

<p>Teknologi FDM (<em>Fused Deposition Modelling</em>) merupakan salah satu teknologi yang digunakan untuk membuat objek 3D. FDM sering disebut sebagai teknologi yang sudah mampu mengubah dunia manufaktur dewasa ini. Namun teknologi FDM memiliki kelemahan karena teknologi ini menggunakan proses <em>building per layer </em>membuat permukaan yang dihasilkan terlihat memiliki garis yang menunjukan batas antar <em>layer </em>sehingga mempengaruhi kekasaran pada permukaan produk cetak.  Penelitian ini menggunakan filamen <em>Super Tough</em> PLA (ST.PLA). Tujuan penelitian ini adalah untuk mengetahui pengaruh parameter proses terhadap kekasaran permukaan objek cetak dan untuk mengetahui seting parameter proses yang menghasilkan kekasaran permukaan terbaik dari parameter proses yang digunakan. Penelitian ini menggunakan metode Taguchi dengan matriks ortogonal L<sub>25</sub>(5<sup>6</sup>).  Parameter proses yang akan dipilih dan dianalisis dalam penelitian ini adalah<em> layer thickness, printing speed, nozzle temperature, orientation, flowrate</em>, <em>cooling speed </em>dan respon yang diamati adalah kekasaran permukaan objek cetak. Untuk mengatasi permasalahan <em>noise</em> (gangguan) maka dicetak masing-masing tiga kali replikasi  Selanjutnya parameter proses tersebut akan dianalisis menggunakan Analisis Varian (ANOVA). Berdasarkan data  hasil pengukuran kekasaran permukaaan objek cetak,  maka diperoleh parameter proses yang memberikan pengaruh paling besar terhadap kekasaran permukaan objek cetak dengan menggunakan filamen ST-PLA adalah <em>layer thickness</em> dengan nilai F hitung sebesar 129,96, <em>flowrate</em> dengan nilai F hitung sebesar 6 dan <em>orientation</em> dengan nilai F hitung sebesar 3,03. Seting parameter proses yang menghasilkan nilai kekasaran permukaan terbaik objek cetak adalah 0,10 mm yaitu pada eksperimen nomor lima (Exp. No. 5) dengan rata-rata  12,61 µm, dengan pengaturan <em>layer thickness</em>, 45 mm/s pada pengaturan <em>printing speed</em>, 210˚C pada <em>nozzle temperature</em>, 0˚ pada <em>orientation</em>, 110% pada pengaturan <em>flowrate</em> dan 40% pada pengaturan <em>cooling speed</em>. Seluruh parameter proses tersebut disetting pada <em>slicing software</em> ideamaker 3.6.1. dalam menghasilkan G-Code objek cetak.</p>


Sign in / Sign up

Export Citation Format

Share Document