Investigations for surface roughness and dimensional accuracy of biomedical implants prepared by combining fused deposition modelling, vapour smoothing and investment casting

Author(s):  
Daljinder Singh ◽  
Rupinder Singh ◽  
K.S. Boparai
2012 ◽  
Vol 463-464 ◽  
pp. 226-233 ◽  
Author(s):  
M.F.M. Omar ◽  
S. Sharif ◽  
M. Ibrahim ◽  
H. Hehsan ◽  
M.N.M. Busari ◽  
...  

The ability of rapid prototyping (RP) technology to fabricate direct part of any complex shape as a sacrificial pattern in shorter lead time has benefited the foundry industries significantly. The quality of investment casting (IC) parts is directly related to the master pattern fabricated from RP process. The main objective of this study was to evaluate the quality characteristics of various RP patterns that were fabricated by various RP processes which include 3D Printer (3DP), Fused Deposition Modeling (FDM) and Multijet Modeling (MJM). Evaluation of the RP patterns was carried out on dimensional accuracy, surface roughness and pattern shrinkage. Different internal pattern designs for the RP parts were developed using Insight software for FDM process and Solidworks 2011 for other RP systems. In addition to the quality assessments, the effect of the internal pattern designs on the burn out behaviour of the RP patterns was also evaluated. Experimental results showed that FDM and MJM produced patterns with better accuracy, surface roughness and part shrinkage when compared to 3DP. It was evident that the internal pattern structure improved the accuracy of the patterns produced from all RP processes. Results showed that FDM and MJM processes were superior in terms of mold cleanliness when no residual ash was observed during the burn out stage. Significant oxidation of ceramic powder was observed on the molds of the 3DP patterns which need to be removed manually from the molds.


This paper reported on the effect of ambient temperature, layer thickness, and part angle on the surface roughness and dimensional accuracy. The response surface methodology (RSM) was employed by using historical data in the experiment to determine the significant factors and their interactions on the fused deposition modelling (FDM) performance. Three controllable variables namely ambient temperature (30 °C, 45 °C, 60 °C), layer thickness (0.178 mm, 0.267 mm, 0.356 mm) and part angle (22.5°, 45°, 67.5°) have been studied. A total of 29 numbers of experiments had been conducted, including two replications at the center point. The results showed that all the parameter variables have significant effects on the part surface roughness and dimensional accuracy. Layer thickness is the most dominant factors affecting surface roughness. Meanwhile, the ambient temperature was the most dominant in determining part dimensional accuracy. The responses of various factors had been illustrated in the cross-sectional sample analysis. The optimum parameter required for minimum surface roughness and dimensional accuracy was at ambient temperature 30 °C, layer thickness 0.18 mm and part angle 67.38°. The optimization has produced maximum productivity with RaH 3.21 µm, RaV 11.78 µm, and RaS 12.79 µm. Meanwhile, dimensional accuracy height eror 3.21%, width error 3.70% and angle 0.38°


2015 ◽  
Vol 1125 ◽  
pp. 499-503
Author(s):  
Soudeh Iranmanesh ◽  
Mohd Hasbullah Idris ◽  
Alireza Esmaeilzadeh

Investment casting has emerged as the foremost casting process for manufacturing of complex parts where better dimensional accuracy is required. Rapid Prototyping (RP) technologies is able to manufacture prototypes from various modelling materials. Stratasys Fused Deposition Modelling (FDM) is a typical RP process that can fabricate prototypes from acrylonitrile butadiene styrene (ABS) used in investment casting process. Elimination of steps in mould making required in the traditional pattern wax preparation makes it quicker and a cost effective process. This paper characterises the behaviour of two proximal humerus ABS pattern constructions, namely solid and hollow fabricated by the FDM 2000 during flash dewaxing process. The dewaxing process parameters such as, temperature and time were regulated and the remaining weight of ABS material in the ceramic mould was examined.


2020 ◽  
Vol 26 (9) ◽  
pp. 1535-1554
Author(s):  
Swapnil Vyavahare ◽  
Shailendra Kumar ◽  
Deepak Panghal

Purpose This paper aims to focus on an experimental study of surface roughness, dimensional accuracy and time of fabrication of parts produced by fused deposition modelling (FDM) technique of additive manufacturing. The fabricated parts of acrylonitrile butadiene styrene (ABS) material have pyramidal and conical features. Influence of five process parameters of FDM, namely, layer thickness, wall print speed, build orientation, wall thickness and extrusion temperature is studied on response characteristics. Furthermore, regression models for responses are developed and significant process parameters are optimized. Design/methodology/approach Comprehensive experimental study is performed using response surface methodology. Analysis of variance is used to investigate the influence of process parameters on surface roughness, dimensional accuracy and time of fabrication in both outer pyramidal and inner conical regions of part. Furthermore, a multi-response optimization using desirability function is performed to minimize surface roughness, improve dimensional accuracy and minimize time of fabrication of parts. Findings It is found that layer thickness and build orientation are significant process parameters for surface roughness of parts. Surface roughness increases with increase in layer thickness, while it decreases initially and then increases with increase in build orientation. Layer thickness, wall print speed and build orientation are significant process parameters for dimensional accuracy of FDM parts. For the time of fabrication, layer thickness and build orientation are found as significant process parameters. Based on the analysis, statistical non-linear quadratic models are developed to predict surface roughness, dimensional accuracy and time of fabrication. Optimization of process parameters is also performed using desirability function. Research limitations/implications The present study is restricted to the parts of ABS material with pyramidal and conical features only fabricated on FDM machine with delta configuration. Originality/value From the critical review of literature it is found that some researchers have made to study the influence of few process parameters on surface roughness, dimensional accuracy and time of fabrication of simple geometrical parts. Also, regression models and optimization of process parameters has been performed for simple parts. The present work is focussed on studying all these aspects in complicated geometrical parts with pyramidal and conical features.


2018 ◽  
Vol 19 (2) ◽  
pp. 221-231 ◽  
Author(s):  
A N M AMANULLAH TOMAL ◽  
Tanveer Saleh ◽  
Md. Raisuddin Khan

ABSTRACT: Currently, two manufacturing methods, namely CNC (Computer Numerical Control) machining and rapid prototyping (RP), are widely used to produce final products and prototypes.  Both the processes have their own advantages. CNC machining such as milling and grinding (subtractive method) can fabricate parts with higher precision and accuracy. On the other hand, RP (additive method), can manufacture parts with complicated 3-D (three dimensional) features, which ensures effective material usage. However, RP produced parts lack accuracy and smooth surface finish. In this research, we are aiming to achieve on-machine mechanical post-processing of 3-D printed (using Fused Deposition Modelling, a kind of RP process) parts to achieve higher dimensional accuracy and better surface roughness. To achieve the goal, we developed a new hybrid system to assimilate both of these processes. There are, however, two vital considerations needed to be taken into account for integrating the two processes. The first concern is the integration of dissimilar control systems for two processes and the second aspect is maintaining the tools’ (milling spindle and the heat extruder) setup accuracy during the changeover step. The developed hybrid machine has been tested with experimentations and the result showed that the dimensional accuracy was improved by 71% to 99% when the FDM part was compared with the final part after abrasive milling operation. At the same time, average surface roughness (Ra) was improved up to 91.3%. Further, we found that low layer thickness improves the product quality. The proposed system could push the conventional FDM system to the next level to attain better quality of final products. ABSTRAK: Dua kaedah terkini proses pembuatan, dinamakan mesin Kawalan Komputer Bernombor (CNC) dan prototaip langsung (RP) telah digunakan secara meluas bagi menghasilkan produk dan prototaip. Kedua-dua proses mempunyai keistimewaan tersendiri. Mesin CNC seperti mesin penghasil permukaan dan mesin penebuk lubang (melalui kaedah pengurangan) dapat menghasilkan sesuatu bahagian dengan ketepatan tinggi. Pada sudut lain, RP (melalui kaedah penambahan), dapat menghasilkan bahagian dengan kaedah 3D (tiga dimensi) yang rumit tetapi berkesan dalam memaksimakan penggunaan material. Walau bagaimanapun, penghasilan bahagian melalui kaedah RP mempunyai kekurangan pada ketepatan dan kekurangan pada kekemasan permukaan akhir. Kajian ini bertujuan meraih ketepatan dimensi yang lebih tinggi dan kekemasan permukaan yang lebih bagus pada proses terakhir pada bahagian cetakan mesin mekanikal 3D (menggunakan Model Deposit Fuse iaitu salah satu proses RP). Bagi mencapai tujuan ini, kami menghasilkan sistem hibrid terbaru untuk mengasimulasi kedua-dua proses. Walau bagaimanapun, terdapat dua perkara penting perlu diambil kira untuk diintegrasi bersama kedua-dua proses. Penilaian pertama adalah pada sistem kawalan tidak serupa, dan kedua pada aspek pengekalan alat (gelendung pemutar dan kepanasan pembentuk) ketepatan penyediaan semasa peringkat perubahan. Mesin hibrid yang dicipta telah diuji melalui eksperimentasi dan keputusan menunjukkan ketepatan dimensi telah bertambah daripada 71% kepada 99% semasa bahagian FDM dibandingkan dengan bahagian akhir selepas operasi putaran kasar. Pada masa sama, purata permukaan kasar (Ra) telah bertambah kepada 91.3%. Kami juga mendapati ketebalan lapisan bawah telah menambah baik kualiti produk. Sistem yang dicadangkan dapat mengubah sistem FDM konvensional kepada peringkat lebih tinggi bagi memperolehi kualiti terbaik pada produk akhir.


2020 ◽  
Vol 14 (3) ◽  
pp. 7296-7308
Author(s):  
Siti Nur Humaira Mazlan ◽  
Aini Zuhra Abdul Kadir ◽  
N. H. A. Ngadiman ◽  
M.R. Alkahari

Fused deposition modelling (FDM) is a process of joining materials based on material entrusion technique to produce objects from 3D model using layer-by-layer technique as opposed to subtractive manufacturing. However, many challenges arise in the FDM-printed part such as warping, first layer problem and elephant food that was led to an error in dimensional accuracy of the printed parts especially for the overhanging parts. Hence, in order to investigate the manufacturability of the FDM printed part, various geometrical and manufacturing features were developed using the benchmarking artifacts. Therefore, in this study, new benchmarking artifacts containing multiple overhang lengths were proposed. After the benchmarking artifacts were developed, each of the features were inspected using 3D laser scanner to measure the dimensional accuracy and tolerances. Based on 3D scanned parts, 80% of the fabricated parts were fabricated within ±0.5 mm of dimensional accuracy as compared with the CAD data. In addition, the multiple overhang lengths were also successfully fabricated with a very significant of filament sagging observed.


2017 ◽  
Vol 23 (6) ◽  
pp. 1226-1236 ◽  
Author(s):  
Ashu Garg ◽  
Anirban Bhattacharya ◽  
Ajay Batish

Purpose The purpose of this paper is to investigate the influence of low-cost chemical vapour treatment process on geometric accuracy and surface roughness of different curved and freeform surfaces of fused deposition modelling (FDM) specimens build at different part building orientations. Design/methodology/approach Parts with different primitive and curved surfaces are designed and modelled to build at three different part orientations along X orientation (vertical position resting on side face), Y orientation (horizontal position resting on base) and Z orientation (upright position). Later, the parts are post-processed by cold vapours of acetone. Geometric accuracy and surface roughness are measured both before and after the chemical treatment to investigate the change in geometric accuracy, surface roughness of FDM parts. Findings The results indicate that surface roughness is reduced immensely after cold vapour treatment with minimum variation in geometric accuracy of parts. Parts build vertically over its side face (X orientation) provides the overall better surface finish and geometric accuracy. Originality/value The present study provides an approach of post-built treatment for FDM parts and observes a significant improvement in surface finish of the components. The present approach of post-built treatment can be adopted to enhance the surface quality as well as to achieve desired geometric accuracy for different primitive, freeform/curved surfaces of FDM samples suitable for functional components as well as prototypes.


Sign in / Sign up

Export Citation Format

Share Document