scholarly journals Reliability on ProSHAKE 2.0 in the Assessment of One Dimensional Ground Response Analysis through Verification Example

It is understood from the recent destructive earthquakes, topography, nature of the bedrock and geometry of the soil deposits are the prime factors that made modifications to the underlying earthquake motion. The influence of such confined soil states on the strong earthquake motion plays a significant task in accessing the uniqueness of ground action. In this paper, the response of the soil layers to the earthquake action of the bedrock directly under it is determined. The analysis is done through frequency domain approach. Pro-shake software 2.0 is used to arrive the reliability of the ground response study. A wide variety of output parameters such as time histories of acceleration, velocity, displacement, shear stress, shear strain, response spectra and maximum amplitude of various parameters with depth are plotted and the other scalar parameters such as peak acceleration, peak velocity, peak displacement, RMS acceleration, arias intensity, predominant period and bracketed duration was computed.

Author(s):  
Haruyuki Yamamoto ◽  
Munkhunur Togtokhbuyan

One-dimensional layered soil lumped mass ground response analysis was conducted for the representative site in Ulaanbaatar, Mongolia. The surficial geology of the site is predominantly composed of the gravely and sandy soil typical of this region in the central part of Ulaanbaatar. The natural period of soil profiles needs to be investigated under several circumstances. For example, these parameters-based study has indicated that damage due to earthquakes occurs when the natural periods, T1 and T2, of the ground are closer to that of a superstructure. Various computational procedures or methods have been proposed for this kind of the ground response analysis. In this paper, the numerical analysis method such as the lumped mass method within eigenvalue analysis is used to determine the natural periods of the ground. The ground surface, soil deposits, and bedrock are assumed to be horizontal. The soil deposits are subjected to shear deformation such as shear modulus, G, on the other hand, excitation of vibration could be a shear modulus on each layer. As well as to determine an engineering bedrock depth in the site, the methodology that is utilized in this paper is focused on the use of the correlation between SPT-N value and soil elastic Young's modulus, E, in the soil profiles, and used over 100 boreholes data with SPT-N values in the vicinity of Ulaanbaatar.


1985 ◽  
Vol 22 (4) ◽  
pp. 466-476 ◽  
Author(s):  
Ashok K. Chugh ◽  
J. Lawrence Von Thun

Modifications and extensions made to the computer programs APOLLO and GADFLEA for studying the generation and dissipation of pore water pressure in soil deposits under earthquake loading are presented. The revised versions of these computer programs permit a fuller use of the analytically estimated site-specific earthquake response of soil deposits. These changes do not, however, alter the basic formulation of the problem and the solution strategies implemented in the computer programs APOLLO and GADFLEA. It is argued that the dynamic pore pressure response results obtained through these programs when used iteratively with the total stress ground response analysis should yield results close to the true effective stress ground response analysis for earthquake loading. Key words: pore pressure, earthquakes, soil dynamics, analysis, effective stress, computer programs, liquefaction.


2014 ◽  
Vol 919-921 ◽  
pp. 1031-1034
Author(s):  
Xiao Fei Li ◽  
Rui Sun

In order to test the applicable of the two equivalent linear seismic response analysis procedures SHAKE2000 and LSSRLI-1 for class І site, 21 underground strong motion records were selected from 11 stations of KiK-net as input earthquake motions. By using these two programs to calculate the peak ground acceleration, soil maximum shear strain and acceleration response spectra. By comparing the results of the two procedures and the measured results to evaluate the proximity of these two methods and then judge which program is closer to the real situation. Studies have shown that in class І site, the results of SHAKE2000 and LSSRLI-1 differ little; but according to the measured records, there are some differences between the two programs results and the measured records. While no matter comparing from which side, SHAKE2000 is closer to the earthquake records.


2021 ◽  
pp. 45-54
Author(s):  
Sonia Akter

Ground motion is the movement of the earth's surface due to explosions or the propagation of seismic waves. In the seismic design process, ground response analysis evaluates the impact of local soil conditions during earthquake shaking. However, it is difficult to determine the dynamic site response of soil deposits in earthquake hazard-prone areas. Structural damage has a great influence on the selection of input ground motion, and in this study, the importance of bedrock motion upon the response of soil is highlighted. The specific site response analysis is assessed through “DEEPSOIl" software with an equivalent linear analysis method. Furthermore, four input motions including Kobe, LomaGilroy, Northridge, and Chi-Chi were selected to obtain normalized response spectra. This study aims to obtain the site amplification of ground motion, peak spectral acceleration (PSA), and maximum peak ground acceleration (PGA) based on shear wave velocity from the detailed site-specific analysis of Bangabandhu Sheikh Mujibor Rahman hall at Khulna University of Engineering & Technology. The maximum shear wave velocity obtained was 205 m/s while the amplification factor varied from 4.01 (Kobe) to 1.8 (Northridge) for rigid bedrock properties. Furthermore, the Kobe earthquake produced the highest (4.3g) PSA and the Northridge earthquake produced the lowest (1.08g) PSA for bedrock, with Vs=205 m/s. The surface PGA values were acquired in the range of 0.254g (Northridge) to 0.722g (Kobe), and the maximum strain values for Kobe earthquakes were in the range of 0.016 to .303. Therefore, the surface acceleration values were very high (>0.12g) for the Kobe earthquake motion.


2021 ◽  
Vol 11 (5) ◽  
pp. 2088
Author(s):  
Jaewon Yoo ◽  
Seokgyeong Hong ◽  
Jaehun Ahn

Earthquake disasters can cause enormous social and economic damage, and therefore the sustainability of infrastructure requires the mitigation of earthquake consequences. In seismic design of infrastructures, it is essential to estimate the response of the site during earthquake. Geotechnical engineers have developed quantitative methods for analyzing the seismic ground response. This study proposes a multilayer perceptron (MLP) model to evaluate the seismic response of the surface based on the seismic motion at the bedrock (or 100 m level), and compares its performance with that of a conventional model. A total of 6 sites, with 100 earthquake events at each site, were selected from the Kiban Kyoshin Network (KiK-net) and used as datasets. The acceleration response spectra were calculated from the predicted and measured (baseline) acceleration histories and compared. The proposed MLP model predicted the magnitudes of response and the natural periods where the response amplifies closely with the measured ground motions (baseline). The MLP model outperformed the conventional model for seismic ground response analysis. However, the proposed model did not perform as well for earthquakes whose response spectra exceed 2g due to a deficiency in large earthquake measurements in the training datasets.


Sign in / Sign up

Export Citation Format

Share Document