scholarly journals Power Quality Analysis of Distribution System Integrated with Multiple PVs

In this work, the Impact of integration of multiple Photo Voltaic distributed generators (PV-DGs) on power quality of the distribution system is analyzed under static and dynamic loads. Major power quality parameters considered for the analysis are voltage deviation (VD), Total Real power and reactive power line losses (PT L & QT L) and Total Harmonic Distortion of Voltage at Buses (THDv ). Test system considered for the study is the IEEE-9 bus test system and types of loads considered are Static RL and Induction motors. Modeling and simulation of test system, PVs and Induction motor loads are carriedoutinMATLAB/SIMULINK software package

Author(s):  
Fredrick Nkado ◽  
Franklin Nkado

Recently, the demand for electrical energy has increased more than energy production due to the growing population and industrialization. Therefore, the distributed generators integration (DGs) into the distribution system has been widely adopted. This work examines the effect of photovoltaic-based distributed generator (PV-DG) integration on power quality effect of a radial distribution system. Firstly, the capacity and optimum placement of the PV-DG units in the distribution network are determined by employing the particle swarm optimization (PSO) algorithm. Then, the impact of PV-DG integration on voltage harmonic distortion is analyzed by performing harmonic load flow analysis. Also, the P-V curve method is used to evaluate the effects of higher PV-DG penetration levels on loading margin and voltage magnitude. The simulation results show that as the PV-DG units’ penetration level increases, a greater level of harmonic distortion is injected, implying that the PV-DG units should only be integrated up to the network’s maximum capacity. Therefore, high harmonic distortion is produced when the PV-DG units are penetrated beyond this maximum penetration level, which has a negative impact on the system’s performance. The total voltage harmonic distortion is 4.17 % and 4.24 % at PCC1 and PCC2 at the highest penetration level, allowing the acceptable harmonic distortion limit. Also, grid-connected PV-DG units improve loading margin and voltage magnitude, according to the P-V curve results. The standard IEEE-33 bus distribution system is modelled in ETAP software and is used as a test system for this study.


2016 ◽  
Vol 839 ◽  
pp. 124-129
Author(s):  
Myat Mon Yee ◽  
Chatchai Sirisamphanwong

Electricity generation from solar energy by using PV cells is drastically increased due to global warming concern, greenhouse effect, and quality of living standards. However, PV generation may offer variable and unpredictable energy output due to intermittent nature of solar irradiance and hence, integration of PV into grid may provide some drawback effect to the power system. The aim of this paper is to investigate the impact of grid connected PV system on the power quality of distribution network. The power quality analysis is based on real measurements of 10 kWp, Energy Park SERT, School of Renewable Energy, Naresuan University, Thailand. Parameters such as active and reactive power, voltage, current, power factor, THDv, THDi, individual harmonic voltage and harmonic current are observed for the investigation of the interaction between SERT PV system and distribution network’s power quality. According to the measured data, PV system operation is negligible in terms of voltage distortion, voltage magnitude and frequency variation. Therefore, it can be noticed that 10 kWp SERT PV system does not effect on the distribution system power quality due to low PV penetration level.


2021 ◽  
Vol 11 (2) ◽  
pp. 774 ◽  
Author(s):  
Ahmed S. Abbas ◽  
Ragab A. El-Sehiemy ◽  
Adel Abou El-Ela ◽  
Eman Salah Ali ◽  
Karar Mahmoud ◽  
...  

In recent years, with the widespread use of non-linear loads power electronic devices associated with the penetration of various renewable energy sources, the distribution system is highly affected by harmonic distortion caused by these sources. Moreover, the inverter-based distributed generation units (DGs) (e.g., photovoltaic (PV) and wind turbine) that are integrated into the distribution systems, are considered as significant harmonic sources of severe harmful effects on the system power quality. To solve these issues, this paper proposes a harmonic mitigation method for improving the power quality problems in distribution systems. Specifically, the proposed optimal planning of the single tuned harmonic filters (STFs) in the presence of inverter-based DGs is developed by the recent Water Cycle Algorithm (WCA). The objectives of this planning problem aim to minimize the total harmonic distortion (THD), power loss, filter investment cost, and improvement of voltage profile considering different constraints to meet the IEEE 519 standard. Further, the impact of the inverter-based DGs on the system harmonics is studied. Two cases are considered to find the effect of the DGs harmonic spectrum on the system distortion and filter planning. The proposed method is tested on the IEEE 69-bus distribution system. The effectiveness of the proposed planning model is demonstrated where significant reductions in the harmonic distortion are accomplished.


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Dalila M.S. ◽  
Zaris I.M.Y. ◽  
Nasarudin A. ◽  
Faridah H.

This paper purposely to examine and analyse the impact of the distribution capacitors banks operation to the transition of total harmonic distortion (THD) level in distribution network system. The main advantage of this work is the simplicity algorithm of the method and the system being analysed using free access open software which is known as electric power distribution system simulator (OpenDSS). In this paper, the harmonic current spectrum which is collected from the commercial site was injected to a node point on IEEE13 bus in order to provide the initial measurement of THD for the network. The proper sizing of the capacitors banks has been set and being deactivated and activated throughout the network to see the transistion in the THD level in the system. The results were achieved by simulation of the data on the configured IEEE13 bus. The simulation work was done by using the combination of C++ source codes, OpenDSS and Microsoft Excel software. From the output results, the THD current has increased up to two times from the initial value in certain phases and for the THD voltage, the THD has increased up to three times from its initial value in all phases.


2014 ◽  
Vol 543-547 ◽  
pp. 878-883
Author(s):  
Jun Dong ◽  
Jian Guo Xu ◽  
Hao Zhang ◽  
Yu Jie Pei ◽  
Xian Feng Li

The cause serious deterioration in power quality problems for the growing impact and nonlinear load capacity, introduced SVC device in the role of modern power systems and applications. According to the lack of adequate regional dynamic reactive power regulation means to cause voltage fluctuations, harmonics exceeded the actual situation, through analysis and simulation of the existing 66kV grid power quality conditions, refers to the necessity of application of SVC, the compensation capacity for SVC, filter capacitor system parameters and control strategies were designed, the results show improved 220kV SVC reactive power flow distribution system, reducing the system once or twice a net loss, reducing the impact and harmonic interference voltage caused by nonlinear loads, system security, economic operation of great significance.


The impact of wind technology on power quality for a distribution system is emphasized in this paper. The Power Quality of a Distribution system depends on voltage and Frequency quality. The pros of integrating the wind turbine to the system are loss reduction and voltage profile improvement but the cons of adding renewable energy to the distribution system are represented in this paper. such as voltage unbalance, flicker, power factor, and the impact of voltage and current harmonics are measured. The performed analysis results indicated the importance of the integration of DG based on Power quality Parameters.


Author(s):  
Lakshman Naik P ◽  
K Palanisamy

<p>The Green Energy sources (solar, wind) are performing a vigorous role to reach the electrical power demand. Due to the presence of non-linear loads, reactive loads in the distribution system and the injection of wind power into the grid integrated system results power quality issues like current harmonics, voltage fluctuations, reactive power demand etc. This paper mainly investigates the designing and satisfactory performance evaluation of solar farm as PV-STATCOM (Static Synchronous Compensator) for enhancement of power quality in grid tie system by using MATLAB environment (Simulink). The proportional and integral (PI) Controller and Hysteresis Current Controller (HCC) were effectively utilized to inject the desired current from voltage source converter (VSC) based PV-STATCOM at PCC for the mitigation of quality related problems in the proposed test system.</p>


Author(s):  
Yahia M Esmail ◽  
S K Elsayed ◽  
M A Mehanna

<p class="DefaultParagraphFont1" align="center"> </p><p align="center"><strong><em>Abstract</em></strong></p><p><em>         Electrical Power Quality is becoming intensity concerned from both electric utilities and customers. Voltage Fluctuations is a major power quality problem as it has a significant impact on both the equipment and production environment. This work describes the voltage control technique of mitigation of voltage fluctuations and clearing fault using Distribution Static Synchronous Compensator (DSTATCOM). The test system used is IEEE 9-bus distribution system clarified optimal location of DSTATCOM by using Artificial Neural Network (ANN). A simulation was done using MATLAB/Simulink software to obtain the results..</em></p><p> </p>


DYNA ◽  
2015 ◽  
Vol 82 (192) ◽  
pp. 26-36
Author(s):  
Herbert Enrique Rojas-Cubides ◽  
Audrey Soley Cruz-Bernal ◽  
Harvey David Rojas-Cubides

<p class="Abstract"><span lang="EN-US">Voltage sags are the most common power quality disturbances in electrical facilities. It may cause malfunction in sensitive equipment and process interruption. The distribution static compensator (DSTATCOM) is a device that can compensate voltage sags by injecting reactive power into distribution system. This paper shows the influence on voltage sags characteristics by the presence of twelve-pulse DSTATCOM in the modified IEEE-13 distribution system. The analysis is performed by means of a random generation of disturbances using a MATLAB routine to identify the critical buses of the test system. Further, the DSTATCOM model taking advantage of the available elements from ATP/EMTP software is described. Simulations show that when DSTATCOM is placed directly to affected bus it is possible to obtain a complete mitigation of the voltage sag. Finally, the relation between the reactive power injected by DSTATCOM, the type of voltage sag and the location of affected bus is considered.</span></p>


2021 ◽  
Vol 12 (1) ◽  
pp. 44
Author(s):  
Maria Tariq ◽  
Hina Zaheer ◽  
Tahir Mahmood

Power Quality (PQ) improvement in grid-integrated photovoltaic (PV) and wind energy hybrid systems for effective power transfer is presented in this paper. Due to interlinked hybrid renewable energy resources and nonlinear loads, various issues arise which affect the power quality, i.e., voltage sag, harmonic distortion increases, and also reactive power demand. In order to mitigate these issues, flexible alternating current transmission system (FACTS) devices are utilized. In this paper, hysteresis band current controller (HBCC)-based static synchronous compensator (STATCOM) is modeled to reduce PQ problems. HBCC is a robust and simple technique to improve voltage profile, reduce total harmonic distortion (THD) and fulfill the reactive power demand. Two case scenarios of the hybrid system, i.e., (I) grid integrated hybrid system without HBCC (II) grid integrated hybrid system with HBCC, are tested. Results demonstrate that under scenario II, load bus voltage is regulated at 1.0 p.u., THD of system voltage and current is reduced 0.25% and 0.35%, respectively, and reactive power demand of 30 kVAR is fulfilled. The HBCC was designed for reducing THD of the system with the limits specified by standards IEEE 519-1992 STATCOM using hysteresis band current controller to improve power quality in the distribution system which is simulated using MATLAB/SIMULINK. After that, the performance of the system is better in terms of power quality.


Sign in / Sign up

Export Citation Format

Share Document