scholarly journals A Versitile Method to Design a Three Fingered Robotic Arm using Cad and Matlab Technique

The main objective of the paper is to design a versatile Robotic Arm that has the capability to mimic the motion of a snake such that work space of the robotic arm is maximized. Design is made to achieve maximum mobility of the Robotic Arm such that it can pick up things and placed in very complex scenarios. The design is able to give degrees of freedom to the robot so that it becomes more versatile. It has a kinematic redundancy, like that of a human arm that enables us to place objects in various orientations. This Robotic arm is equipped with a three fingered gripper that provides for efficient grasping. The paper also provides design details of three fingered gripper that is suitable to hold cylindrical objects such as bolts, cable connectors etc. Autodesk Fusion 360 has been used to make cad model of arm and grippers. The 3D arm and gripper are assembled with revolute joints. The robot is tested for its mobility by performing Kinematic Analysis.

2021 ◽  
Author(s):  
Asif Arefeen ◽  
Yujiang Xiang

Abstract In this paper, an optimization-based dynamic modeling method is used for human-robot lifting motion prediction. The three-dimensional (3D) human arm model has 13 degrees of freedom (DOFs) and the 3D robotic arm (Sawyer robotic arm) has 10 DOFs. The human arm and robotic arm are built in Denavit-Hartenberg (DH) representation. In addition, the 3D box is modeled as a floating-base rigid body with 6 global DOFs. The interactions between human arm and box, and robot and box are modeled as a set of grasping forces which are treated as unknowns (design variables) in the optimization formulation. The inverse dynamic optimization is used to simulate the lifting motion where the summation of joint torque squares of human arm is minimized subjected to physical and task constraints. The design variables are control points of cubic B-splines of joint angle profiles of the human arm, robotic arm, and box, and the box grasping forces at each time point. A numerical example is simulated for huma-robot lifting with a 10 Kg box. The human and robotic arms’ joint angle, joint torque, and grasping force profiles are reported. These optimal outputs can be used as references to control the human-robot collaborative lifting task.


MACRo 2015 ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 235-244
Author(s):  
Ferenc Tolvaly-Rosca ◽  
István Papp

AbstractConstraint equations for complex robot structures can lead to a large number of equations. Also, constraint equations permits universal solutions for various mechanisms and solving a large number of equations can be simplified with numerical solutions. Therefore, if discreet solutions are allowed, a universal way to determine the necessary control parameters of a mechanism for different positions, or corresponding positions for different driving parameters is to use constraint equations. A direct kinematical analysis of a 2 DoF spherical mechanism with two driving axes is presented; a numerical simulation is made for given arm dimensions; according to specified degrees of freedom, a simplified CAD model is built and driven with the angular parameters.


2015 ◽  
Vol 7 (4) ◽  
Author(s):  
Yaobin Tian ◽  
Yan-An Yao ◽  
Jieyu Wang

In this paper, a rolling mechanism constructed by a spatial 8-bar linkage is proposed. The eight links are connected with eight revolute joints, forming a single closed-loop with two degrees of freedom (DOF). By kinematic analysis, the mechanism can be deformed into planar parallelogram or spherical 4-bar mechanism (SFM) configuration. Furthermore, this mechanism can be folded onto a plane at its singularity positions. The rolling capability is analyzed based on the zero-moment-point (ZMP) theory. In the first configuration, the mechanism can roll along a straight line. In the second configuration, it can roll along a polygonal region and change its rolling direction. By alternatively choosing one of the two configurations, the mechanism has the capability to roll along any direction on the ground. Finally, a prototype was manufactured and some experiments were carried out to verify the functions of the mechanism.


2015 ◽  
Vol 762 ◽  
pp. 305-311
Author(s):  
Mihai Crenganis ◽  
Octavian Bologa

In this paper we have presented a method to solve the inverse kinematics problem of a redundant robotic arm with seven degrees of freedom and a human like workspace based on mathematical equations, Fuzzy Logic implementation and Simulink models. For better visualization of the kinematics simulation a CAD model that mimics the real robotic arm was created into SolidWorks® and then the CAD parts were converted into SimMechanics model.


2014 ◽  
Vol 657 ◽  
pp. 823-828
Author(s):  
Mihai Crenganis ◽  
Radu Eugen Breaz ◽  
Sever Gabriel Racz ◽  
Octavian Bologa

In this paper we have presented a method to solve the inverse kinematics problem of a redundant robotic arm with seven degrees of freedom and a human like workspace based on mathematical equations, ANFIS implementation and Simulink models. For better visualization of the kinematics simulation a CAD model that mimics the real robotic arm was created into SolidWorks® and then the CAD parts were converted into SimMechanics model.


2014 ◽  
Vol 555 ◽  
pp. 320-326 ◽  
Author(s):  
Mihai Crenganis ◽  
Radu Breaz ◽  
Gabriel Racz ◽  
Octavian Bologa

In this paper we have presented a method to solve the inverse kinematics problem of a redundant robotic arm with seven degrees of freedom and a human like workspace based on mathematical equations, Fuzzy Logic implementation and Simulink models. For better visualization of the kinematics simulation a CAD model that mimics the real robotic arm was created into SolidWorks® and then the CAD parts were converted into SimMechanics model.


2020 ◽  
Vol 1 (2) ◽  
pp. 35-42
Author(s):  
Norsinnira Zainul Azlan ◽  
Mubeenah Titilola Sanni ◽  
Ifrah Shahdad

This paper presents the design and development of a new low-cost pick and place anthropomorphic robotic arm for the disabled and humanoid applications. Anthropomorphic robotic arms are weapons similar in scale, appearance, and functionality to humans, and functionality. The developed robotic arm was simple, lightweight, and has four degrees of freedom (DOF) at the hand, shoulder, and elbow joints. The measurement of the link was made close to the length of the human arm. The anthropomorphic robotic arm was actuated by four DC servo motors and controlled using an Arduino UNO microcontroller board. The voice recognition unit drove the command input for the targeted object. The forward and inverse kinematics of the proposed new robotic arm has been analysed and used to program the low cost anthropomorphic robotic arm prototype to reach the desired position in the pick and place operation. This paper’s contribution is in developing the low cost, light, and straightforward weight anthropomorphic arm that can be easily attached to other applications such as a wheelchair and the kinematic study of the specific robot. The low-cost robotic arm’s capability has been tested, and the experimental results show that it can perform basic pick place tasks for the disabled and humanoid applications.


Robotica ◽  
1999 ◽  
Vol 17 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Tamio Arai ◽  
Shojiro Matsumura ◽  
Yuji Yoshimura ◽  
Hisashi Osumi

Industrial robots have a high positioning accuracy and stiffness but their work spaces are limited because their bases are fixed to the ground. To enlarge the work spaces, this paper proposes a novel mechanism, a wire suspended manipulator with three degrees of freedom. First, the kinematics of the mechanism is derived from both force and geometric constraints. Second, the volume of the work space is numerically calculated. After the evaluation of manipulability of the wire suspended system, guidelines for designing parameters are studied.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Soumya Kanti Manna ◽  
Subhasis Bhaumik

The developed exoskeleton device (Exorn) has ten degrees of freedom to control joints starting from shoulder griddle to wrist to provide better redundancy, portability, and flexibility to the human arm motion. A 3D conceptual model is being designed to make the system wearable by human arm. All the joints are simple revolute joints with desired motion limit. A Simulink model of the human arm is being developed with proper mass and length to determine proper torque required for actuating those joints. Forward kinematics of the whole system has been formulated for getting desired dexterous workspace. A proper and simple Graphical User Interface (GUI) and the required embedded system have been designed for providing physiotherapy lessons to the patients. In the literature review it has been found that researchers have generally ignored the motion of shoulder griddle. Here we have implemented those motions in our design. It has also been found that people have taken elbow pronation and supination motion as a part of shoulder internal and external rotation though both motions are quite different. A predefined resolved motion rate control structure with independent joint control is used so that all movements can be controlled in a predefined way.


2018 ◽  
Vol 15 (06) ◽  
pp. 1850026 ◽  
Author(s):  
Meng Li ◽  
Weizhong Guo ◽  
Rongfu Lin ◽  
Changzheng Wu ◽  
Liangliang Han

The aim of this paper is trying to propose an efficient method of inverse kinematics and motion generation for redundant humanoid robot arm based on the intrinsic principles of human arm motion. The intrinsic principle analysis takes into account both the skeletal kinematics and muscle strength properties. Firstly, this work analyzed the kinematic redundancy problem of a human arm. By analyzing the biological feature of a human arm, the kinematic redundancy boils down to the uncertainty of elbow position. Secondly, because the muscle’s kinematic and strength properties are critical for simulating biometric motion authentically, the muscle strength property was introduced as the criterion for configuration identification and motion generation. Three types of limb configuration, dog walking, gecko climbing, and human walking limb configuration were analyzed, and two geometrical configuration identification rules were deduced to generate biomimetic motion for humanoid robotic arms. By comparing the proposed method with other five IK methods, the proposed method significantly deduced the computing time. Finally, the configuration identification rules were used to generate motions for a 7-DoF humanoid robotic arm. The results showed that the biological rules can generate biomimetic, smooth arm motions for a redundant humanoid robotic arm.


Sign in / Sign up

Export Citation Format

Share Document