scholarly journals Design and Analysis of 1x2 Circular Patch Antenna Array for 2.4 GHz Applications

A 1x2 Circular micro strip patch antenna array operating at 2.4GHz using Ansys based HFSS simulator software is designed. It is useful for different WLAN (wireless local area network) applications, Bluetooth and IoT communications. The circular patch antenna is constructed on a FR4 substrate with dielectric constant = 4.4 and height of the substrate is 1.6mm and is fed using edge feeding technique. Several antenna characteristics such as return loss, radiation pattern, bandwidth, directivity, antenna gain, radiation efficiency etc. are studied.

2016 ◽  
Vol 66 (2) ◽  
pp. 162 ◽  
Author(s):  
K. G. Jangid ◽  
Ajay Tiwari ◽  
Vijay Sharma ◽  
V.S. Kulhar ◽  
V.K. Saxena ◽  
...  

<p>The design and performance of coplanar waveguide fed modified circular patch antenna for possible application in ultra wideband communication systems with band rejection for upper wireless local area network band (5.15 GHz - 5.85 GHz) is reported. This antenna is designed on glass epoxy FR4 substrate having size 30 mm × 20 mm × 1.59 mm. The coplanar waveguide fed circular patch antenna is modified by introducing L shaped slits in ground plane and U shaped slot in patch and performance analysis of antenna is simulated by applying CST microwave studio simulation software. Different designed antennas were tested with available experimental facilities. The developed end product shows a nice matching with feed network at frequencies 2.62 GHz, 3.94 GHz and 8.50 GHz and provides 10.38 GHz (3.33 GHz - 13.71 GHz) impedance bandwidth with wireless local area network 5.5 GHz (4.74 GHz - 6.15 GHz) band rejection. The co and cross polar patterns in elevation and azimuth planes at two frequencies namely 2.62 GHz and 3.94 GHz are obtained which dictate that co-polar patterns are significantly better than cross polar patterns. The simulated peak gain of antenna is close to 3.86 dBi and gain variation with frequency shows a sharp gain decrease in the frequency range 4.74 GHz to 6.15 GHz.</p><p> </p>


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Heru Abrianto

Microstrip antenna which designed with dual feeding at 2.4 GHz and 5.8 GHz can meet WLAN (Wireless Local Area Network) application.Antenna fabrication use PCB FR4 double layer with thickness 1.6 mm and dielectric constant value 4.4. The length of patch antenna according to calculation 28.63 mm, but to get needed parameter length of patch should be optimized to 53 mm. After examination, this antenna has VSWR 1.212 at 2.42 GHz and 1.502 at 5.8 GHz, RL -13.94 dB at 2.42 GHz and -20.357 dB at 5.8 GHz, gain of antenna 6.16 dB at 2.42 GHz and 6.91 dB at 5.8 GHz, the radiation pattern is bidirectional. Keywords : microstrip antenna, wireless LAN, dual polarization, single feeding technique


In this paper,CPW fed Trapezoid shape patch antenna is analyzed and investigated for Wireless Local Area Network (WLAN) application. The proposed antenna is fabricated on FR4 substrate having dimensions of 19mm ×21.2mm ×1.6mm. It resonates at 5.44 GHz frequency with peak return loss of 25.8 dB. The parametric study of proposed antenna is carried out to understand the effect of different values of ground plane on the impedance bandwidth, return loss of the antenna andalso to optimize the antenna parameters. The CPW-fed is used to enhance the bandwidth and to reduce the return loss of the antenna. The importance of different design parameters like current distribution, S-parameter, gain, and radiation pattern are studied. The results of the proposed antenna are useful for WLAN Application.


Author(s):  
Gaurav Varma ◽  
Rishabh Kumar Baudh

The aim is to design a Rhombus microstrip patch antenna. The antenna operates at FL=1.447 GHz to FH=2.382 GHz frequency for wireless local area network (WLAN). This antenna operates at f=1.914 GHz resonant frequency. In microstrip patch antenna, many types of shapes like circular, triangular, rectangular, square, ring shape, etc. are used, but in this design a rectangular shape is used. In proposed antenna, the accuracy and efficiency are increased. Integral equation three-dimensional (3D) software (IE3D) is used for the optimize of the rhombus cross-slotted antenna design. The IE3D uses a full wave method of moment simulator. This antenna fabricated on FR4 glass epoxy double-sided copper dielectric material with relative permittivity of ∈ =4.4, thickness h= 1.60mm, and loss tangent is 0.013.


Sign in / Sign up

Export Citation Format

Share Document