scholarly journals Mobile Sink Based Data Assemblage in Wireless Sensor Networks

2019 ◽  
Vol 8 (4) ◽  
pp. 5543-5550

A mobile sink, which is used to fetch data from various sensors to prevent the energy-hole problem or hotspot in WSN. To avoid the delay sustained by calling on the sensors a mobile sink is allowed to visit which is called as meeting points and the remaining nodes deliver their data to nearest rendezvous point. The improvement of sink’s data collecting method as well as the maximization of lifespan of the network is done by discovering a most favorable set of meeting points. However, it is very difficult to discover the assigned meeting points and moving way of mobile sink when the sensor produces data roughly. We propose an ultra-modern ACO based mobile sink data gathering in WSN. The important aims of the suggested algorithm are to elongate the existence of network and to reduce the delay in fetching data from sensor nodes. The algorithm also follows to again select the rendezvous points in order to stable the energy utilization of the sensor nodes.

2020 ◽  
Vol 11 (1) ◽  
pp. 36-48
Author(s):  
Amiya Bhusan Bagjadab ◽  
Sushree Bibhuprada B. Priyadarshini

Wireless sensor networks are commonly used to monitor certain regions and to collect data for several application domains. Generally, in wireless sensor networks, data are routed in a multi-hop fashion towards a static sink. In this scenario, the nodes closer to the sink become heavily involved in packet forwarding, and their battery power is exhausted rapidly. This article proposes that a special node (i.e., mobile sink) will move in the specified region and collect the data from the sensors and transmit it to the base station such that the communication distance of the sensors will be reduced. The aim is to provide a track for the sink such that it covers maximum sensor nodes. Here, the authors compared two tracks theoretically and in the future will try to simulate the two tracks for the sink movement so as to identify the better one.


2021 ◽  
Author(s):  
Saim Abassi ◽  
Irfan Anis ◽  
Muhammad Kashif ◽  
Usman Bashir Tayab

Abstract In couple of years, the great research towards oceanographic data transmission and submerged impurity the Submerged Wireless Sensor Networks are getting great consideration. SWSN includes issues such as link sustainability, time to begin interaction, data loss due to real-time transmission attempts and transmission range. The aforementioned complications have been approached through different routing configurations, but none of these can handle transmission efficiently. In this paper we proposed a framework of network in depth based data acquisition system with simulation and experimental results. The system model has been efficiently transmit data (Turbidity, Temperature and PH) in a region (Indus River) using the smart cluster sensor nodes and acquires result of 6.5 to 31 N.T.U of turbidity. The experimental results proved that the projected work improves the performance of the data transmission in Submerged Wireless Sensor Networks.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Khalid Mahmood ◽  
Muhammad Amir Khan ◽  
Mahmood ul Hassan ◽  
Ansar Munir Shah ◽  
Shahzad Ali ◽  
...  

Wireless sensor networks are envisioned to play a very important role in the Internet of Things in near future and therefore the challenges associated with wireless sensor networks have attracted researchers from all around the globe. A common issue which is well studied is how to restore network connectivity in case of failure of single or multiple nodes. Energy being a scarce resource in sensor networks drives all the proposed solutions to connectivity restoration to be energy efficient. In this paper we introduce an intelligent on-demand connectivity restoration technique for wireless sensor networks to address the connectivity restoration problem, where nodes utilize their transmission range to ensure the connectivity and the replacement of failed nodes with their redundant nodes. The proposed technique helps us to keep track of system topology and can respond to node failures effectively. Thus our system can better handle the issue of node failure by introducing less overhead on sensor node, more efficient energy utilization, better coverage, and connectivity without moving the sensor nodes.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Fan Chao ◽  
Zhiqin He ◽  
Renkuan Feng ◽  
Xiao Wang ◽  
Xiangping Chen ◽  
...  

Tradition wireless sensor networks (WSNs) transmit data by single or multiple hops. However, some sensor nodes (SNs) close to a static base station forward data more frequently than others, which results in the problem of energy holes and makes networks fragile. One promising solution is to use a mobile node as a mobile sink (MS), which is especially useful in energy-constrained networks. In these applications, the tour planning of MS is a key to guarantee the network performance. In this paper, a novel strategy is proposed to reduce the latency of mobile data gathering in a WSN while the routing strategies and tour planning of MS are jointly optimized. First, the issue of network coverage is discussed before the appropriate number of clusters being calculated. A dynamic clustering scheme is then developed where a virtual cluster center is defined as the MS sojourn for data collection. Afterwards, a tour planning of MS based on prediction is proposed subject to minimizing the traveling distance to collect data. The proposed method is simulated in a MATLAB platform to show the overall performance of the developed system. Furthermore, the physical tests on a test rig are also carried out where a small WSN based on an unmanned aerial vehicle (UAV) is developed in our laboratory. The test results validate the feasibility and effectiveness of the method proposed.


Author(s):  
Amarasimha T. ◽  
V. Srinivasa Rao

Wireless sensor networks are used in machine learning for data communication and classification. Sensor nodes in network suffer from low battery power, so it is necessary to reduce energy consumption. One way of decreasing energy utilization is reducing the information transmitted by an advanced machine learning process called support vector machine. Further, nodes in WSN malfunction upon the occurrence of malicious activities. To overcome these issues, energy conserving and faulty node detection WSN is proposed. SVM optimizes data to be transmitted via one-hop transmission. It sends only the extreme points of data instead of transmitting whole information. This will reduce transmitting energy and accumulate excess energy for future purpose. Moreover, malfunction nodes are identified to overcome difficulties on data processing. Since each node transmits data to nearby nodes, the misbehaving nodes are detected based on transmission speed. The experimental results show that proposed algorithm provides better results in terms of reduced energy consumption and faulty node detection.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Mariam Akbar ◽  
Nadeem Javaid ◽  
Wadood Abdul ◽  
Sanaa Ghouzali ◽  
Abid Khan ◽  
...  

Mobile Sink (MS) based routing strategies have been widely investigated to prolong the lifetime of Wireless Sensor Networks (WSNs). In this paper, we propose two schemes for data gathering in WSNs: (i) MS moves on random paths in the network (RMS) and (ii) the trajectory of MS is defined (DMS). In both the schemes, the network field is logically divided into small squares. The center point of each partitioned area is the sojourn location of the MS. We present three linear programming based models: (i) to maximize network lifetime, (ii) to minimize path loss, and (iii) to minimize end to end delay. Moreover, a geometric model is proposed to avoid redundancy while collecting information from the network nodes. Simulation results show that our proposed schemes perform better than the selected existing schemes in terms of the selected performance metrics.


Sign in / Sign up

Export Citation Format

Share Document