scholarly journals Design of an Optimal Distributed Energy Efficient Hybrid Optical – Acoustic Cluster Based Routing Protocol (EEHCRP) to Minimize the Energy Consumption in Underwater Wireless Sensor Networks

For ocean exploration high speed data transmission is the emergent requirement. Acoustic sensor networks are available to support large distances but with lower data rates and also consume maximum energy. Optical networks can be used to support high speed data transmission but it cannot be used for larger distances. Underwater Wireless Sensor Networks (UWSN) suffer from large propagation delay, high bit error rates, limited bandwidth, uncontrolled node mobility, water current and limited resources. Hence there is an evolving requirement for design and use of an efficient routing protocol. In the proposed research, design of an Optimal Distributed Energy Efficient Hybrid Optical - Acoustic Cluster Based Routing Protocol (EEHCRP) to minimize the energy consumption in Underwater Wireless Sensor Networks is considered. To overcome these problems we propose an Energy Efficient Hybrid Optical-Acoustic Cluster Based Routing Protocol for Underwater Wireless Sensor Network (EEHCRP). In this research work we study various network parameters like network throughput, network life time, average energy consumption, end to end delay and data delivery ratio for mobile nodes ranging from 50 to 500. It is observed that there is an average increase of 0.9% network throughput in the proposed EEHRCP protocol compared to CBE2R protocol. The network life time is increased to 51.2 seconds with a decrease in 0.93% of energy consumption and 0.48 % decrease in end to end delay in the proposed protocol EEHRCP compared to CBE2R protocol. There is an increase in 0.95% of data delivery ratio using the proposed EEHRCP protocol compared to E-CBCCP protocol.

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7278
Author(s):  
Ahmad M. Khasawneh ◽  
Omprakash Kaiwartya ◽  
Jaime Lloret ◽  
Hayfa Y. Abuaddous ◽  
Laith Abualigah ◽  
...  

In this paper, we propose a non-localization routing protocol for underwater wireless sensor networks (UWSNs), namely, the triangle metric based multi-layered routing protocol (TM2RP). The main idea of the proposed TM2RP is to utilize supernodes along with depth information and residual energy to balance the energy consumption between sensors. Moreover, TM2RP is the first multi-layered and multi-metric pressure routing protocol that considers link quality with residual energy to improve the selection of next forwarding nodes with more reliable and energy-efficient links. The aqua-sim package based on the ns-2 simulator was used to evaluate the performance of the proposed TM2RP. The obtained results were compared to other similar methods such as depth based routing (DBR) and multi-layered routing protocol (MRP). Simulation results showed that the proposed protocol (TM2RP) obtained better outcomes in terms of energy consumption, network lifetime, packet delivery ratio, and end-to-end delay.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Fang Zhu ◽  
Junfang Wei

Underwater Wireless Sensor Networks (UWSNs) have drawn tremendous attentions from all fields because of their wide application. Underwater wireless sensor networks are similar to terrestrial Wireless Sensor Networks (WSNs), however, due to different working environment and communication medium, UWSNs have many unique characteristics such as high bit error rate, long end-to-end delay and low bandwidth. These characteristics of UWSNs lead to many problems such as retransmission, high energy consumption and low reliability. To solve these problems, many routing protocols for UWSNs are proposed. In this paper, a localization-free routing protocol, named energy efficient routing protocol based on layers and unequal clusters (EERBLC) is proposed. EERBLC protocol consists of three phases: layer and unequal cluster formation, transmission routing, maintenance and update of clusters. In the first phase, the monitoring area under the water is divided into layers, the nodes in the same layer are clustered. For balancing energy of the whole network and avoiding the “hotspot” problem, a novel unequal clustering method based on layers for UWSNs is proposed, in which a new calculation method of unequal cluster size is presented. Meanwhile, a new cluster head selection mechanism based on energy balance and degree is given. In the transmission phase, EERBLC protocol proposes a novel next forwarder selection method based on the forwarding ratio and the residual energy. In the third phase, Intra and inter cluster updating method is presented. The simulation results show that the EERBLC can effectively balance the energy consumption, prolong the network lifetime, and increase the amount of data transmission compared with DBR and EEDBR protocols.


2020 ◽  
Vol 11 (1) ◽  
pp. 312
Author(s):  
Xingxing Xiao ◽  
Haining Huang ◽  
Wei Wang

Due to the limited battery energy of underwater wireless sensor nodes and the difficulty in replacing or recharging the battery underwater, it is of great significance to improve the energy efficiency of underwater wireless sensor networks (UWSNs). We propose a novel energy-efficient clustering routing protocol based on data fusion and genetic algorithms (GAs) for UWSNs. In the clustering routing protocol, the cluster head node (CHN) gathers the data from cluster member nodes (CMNs), aggregates the data through an improved back propagation neural network (BPNN), and transmits the aggregated data to a sink node (SN) through a multi-hop scheme. The effective multi-hop transmission path between the CHN and the SN is determined through the enhanced GA, thereby improving transmission efficiency and reducing energy consumption. This paper presents the GA based on a specific encoding scheme, a particular crossover operation, and an enhanced mutation operation. Additionally, the BPNN employed for data fusion is improved by adopting an optimized momentum method, which can reduce energy consumption through the elimination of data redundancy and the decrease of the amount of transferred data. Moreover, we introduce an optimized CHN selecting scheme considering residual energy and positions of nodes. The experiments demonstrate that our proposed protocol outperforms its competitors in terms of the energy expenditure, the network lifespan, and the packet loss rate.


2020 ◽  
Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 39587-39604 ◽  
Author(s):  
Muhammad Faheem ◽  
Rizwan Aslam Butt ◽  
Basit Raza ◽  
Hani Alquhayz ◽  
Muhammad Waqar Ashraf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document