scholarly journals Application of Ground Penetrating Radar for Underground Utility Detection

The accurate location of underground utilities at a construction site can prevent any damage to the utilities during excavation works. The cost of fixing the damage utilities can be very costly and will reduced the expected profit of the construction works. Therefore underground utility detection using Ground Penetrating Radar (GPR) is important in providing accurate information of the utilities at a construction site. In this study TerraSIRch SIR-3000 GPR equipment have been used to detect underground utility, with a 400 MHz ability which can reach up to 3m depth. RADAN 7 software is used to interpret and analyze the GPR data. Based on the results obtained the GPR equipment is capable of detecting underground utilities such as pipe, cable, shaft, etc.. The detected utilities are then shown in the 2-D and 3-D drawing for better visualization and identification.

2016 ◽  
Vol 78 (7-3) ◽  
Author(s):  
Nur Azwin Ismail ◽  
Nordiana Mohd Muztaza ◽  
Rosli Saad

Ground Penetrating Radar (GPR) is a geophysical method that is widely used in geophysical surveys, civil engineering applications, archaeological studies and locating underground utilities or hidden objects. It works by sending electromagnetic (EM) wave into the ground by transmitter and recording the returning signals by receiver. The returning signals bring information about the materials and changes in material parameters at different depths. The changes in dielectric properties () of two adjacent media result in EM wave reflections. In this study, several types of materials with different dielectric properties () are used in order to identify the reflectivity of the EM wave. Results prove that the larger the dielectric contrast, the higher the reflection coefficient thus the stronger the reflection.


Author(s):  
Simone Meschino ◽  
Lara Pajewski

SPOT-GPR (release 1.0) is a new freeware tool implementing an innovative Sub-Array Processing method, for the analysis of Ground-Penetrating Radar (GPR) data with the main purposes of detecting and localizing targets. The software is implemented in Matlab, it has a graphical user interface and a short manual. This work is the outcome of a series of three Short-Term Scientific Missions (STSMs) funded by European COoperation in Science and Technology (COST) and carried out in the framework of the COST Action TU1208 “Civil Engineering Applications of Ground Penetrating Radar” (www.GPRadar.eu). The input of the software is a GPR radargram (B-scan). The radargram is partitioned in subradargrams, composed of a few traces (A-scans) each. The multi-frequency information enclosed in each trace is exploited and a set of dominant Directions of Arrival (DoA) of the electromagnetic field is calculated for each sub-radargram. The estimated angles are triangulated, obtaining a pattern of crossings that are condensed around target locations. Such pattern is filtered, in order to remove a noisy background of unwanted crossings, and is then processed by applying a statistical procedure. Finally, the targets are detected and their positions are predicted. For DoA estimation, the MUltiple SIgnal Classification (MUSIC) algorithm is employed, in combination with the matched filter technique. To the best of our knowledge, this is the first time the matched filter technique is used for the processing of GPR data. The software has been tested on GPR synthetic radargrams, calculated by using the finite-difference time-domain simulator gprMax, with very good results.


2019 ◽  
Vol 2 (5) ◽  
pp. 97-104
Author(s):  
Van Thanh Nguyen ◽  
Thuan Van Nguyen ◽  
Trung Hoai Dang ◽  
Triet Minh Vo ◽  
Lieu Nguyen Nhu Vo

Designing and mapping underground construction works have been doing for years to meet urgent demands in urbanization process. In this field, Ground Penetrating Radar (GPR) method has shown many advantages in determining underground structures. However, our country has almost no processing program that meets demands of processing and interpretation GPR data. This paper introduced GPRTVN processing program which was the research result of the Department of Geophysics for years. This program could process data of many present GPR equipments and quickly provide cross sections of existing underground constructions. It would be very useful for construction and building investigation companies in Vietnam.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012056
Author(s):  
Hasimah Ali ◽  
Nurul Syahirah Mohd Ideris ◽  
A F Ahmad Zaidi ◽  
M S Zanar Azalan ◽  
T S Tengku Amran ◽  
...  

Abstract This paper presents a review on Ground Penetrating Radar (GPR) detection and mapping of buried utilities which have been widely used as non-destructive investigation and efficiently in terms of usage. The reviews cover on experimental design in GPR data collection and survey, pre-processing, extracting hyperbolic feature using image processing and machine learning techniques. Some of the issues and challenges facing by the GPR interpretation particularly in extracting the hyperbolas pattern of underground utilities have also been highlighted.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Zhenghuan Xia ◽  
Qunying Zhang ◽  
Shengbo Ye ◽  
Zhiwu Xu ◽  
Jie Chen ◽  
...  

Low-frequency coded ground penetrating radar (GPR) with a pair of wire dipole antennas has some advantages for deep detection. Due to the large distance between the two antennas, the synchronization design is a major challenge of implementing the GPR system. This paper proposes a simple and stable wireless automatic synchronization method based on our developed GPR system, which does not need any synchronization chips or modules and reduces the cost of the hardware system. The transmitter omits the synchronization preamble and pseudorandom binary sequence (PRBS) at an appropriate time interval, while receiver automatically estimates the synchronization time and receives the returned signal from the underground targets. All the processes are performed in a single FPGA. The performance of the proposed synchronization method is validated with experiment.


2021 ◽  
Author(s):  
Lilong Zou ◽  
Fabio Tosti ◽  
Amir M. Alani ◽  
Motoyuki Sato

<p>The integrity and flatness of airport pavement facilities are important to maintain safe operations of aircrafts. Even a small defect and resulting debris can cause catastrophic accidents and, therefore, anomalies must be accurately detected for the first time before major damage occurs. To this effect, it is necessary to develop a low-cost, efficient, and accurate inspection technology to detect the anomalies in airport concrete pavements. In recent years, non-destructive testing (NDT) methods have been widely used in airport pavement inspection and maintenance due to the provision of reliable and efficient information. Amongst the NDT techniques, GPR can provide optimal resolutions for different applications in civil engineering due to the ultra-wide frequency band configuration [1][2]. However, for the investigation of airport pavement facilities main challenges are how to extract information from the reflections by small anomalies [3][4].</p><p>In this research, we used a MIMO GPR system to inspect the interlayer debonding in a large area of an airport pavement. A special set of antenna arrangements of the system can obtain common mid-point (CMP) gathers during a common offset survey simultaneously. The existence of interlayer debonding affects the phase of the reflection signals, and the phase disturbance can be quantified by wavelet transform. Therefore, an advanced approach that uses the average entropy of the wavelet transform parameters in a CMP gathers to detect the interlayer debonding in airport pavements is proposed.</p><p>The aim of this research is to provide more significant and accurate information for airport pavement inspections using a MIMO GPR system. To this extent, the wavelet entropy analysis is applied to identify the interlayer debonding existed in the shallow region. The proposed approach was then evaluated by field tests on an airport taxiway. The results were validated by on-site coring and demonstrate that the regions with high entropy correspond to the regions where tiny voids occurred. The proposed method has proven potential to detect the interlayer debonding of the pavement model accurately and efficiently.</p><p> </p><p>References</p><p>[1] Alani, A. M. et al., 2020. Reverse-Time Migration for Evaluating the Internal Structure of Tree-Trunks Using Ground-Penetrating Radar. NDT&E International, vol.115, pp:102294.</p><p>[2] Zou, L. et al., 2020. Mapping and Assessment of Tree Roots using Ground Penetrating Radar with Low-Cost GPS. Remote Sensing, vol.12, no.8, pp:1300.</p><p>[3] Zou, L. et al., 2020. On the Use of Lateral Wave for the Interlayer Debonding Detecting in an Asphalt Airport Pavement Using a Multistatic GPR System. IEEE Transaction on Geoscience and Remote Sensing, vol. 58, no. 6, pp. 4215-4224.</p><p>[4] Zou, L. et al., 2021. Study on Wavelet Entropy for Airport Pavement Debonded Layer Inspection by using a Multi-Static GPR System. Geophysics, in press.</p>


Author(s):  
T. Kishan Rao ◽  
M Shankar Lingam ◽  
Manish Prateek ◽  
E. G. Rajan

A drilling company operates in accordance with a contract which specifies that an oil well will be drilled to a specific depth. The average cost to find and develop an oil and gas property in the United States is $17.01/ barrels-of-oil-equivalent from 2005 to 2007. The cost for onshore development was $13.38/BOE and for offshore development was $49.54/BOE. Based on some statistics one out of five rigs drilled in an area yields oil recovery. This means $20 million has to be spent for prospecting and locating one oil well. The question that arises now is whether it is worth trying all possibilities of reducing the cost of locating an oil well to $4 million and save $16 million. Well, the research presented in this paper is aimed at showing such a possibility.


Sign in / Sign up

Export Citation Format

Share Document