scholarly journals Design and Implementation of Jtag Compatible 4-Bit Multiplier

2020 ◽  
Vol 9 (1) ◽  
pp. 1317-1320

The novel scan- based methodology was developed and resulted in system designers agreeing on it due to the rising complication of boards and also enhancement of technologies like multichip modules. It is called as boundary scan testing for the board level chips. This method was established by the Joint Test Access Group. It was named as JTAG. JTAG was developed for verifying designs and testing printed circuit boards after manufacture. A JTAG interface is a special interface added to a chip. Traditional test technologies require very large and expensive equipment. The most aim of this paper is to style and implement 4-bit multiplier using this standard. The designs were being verified and the circuit boards were being tested after the manufacture by using the industry standard JTAG. It is employed because of accessing sub-blocks of chips. It's a very important mechanism for debugging embedded systems. Boundary-scan cells created exploitation electronic device and latch circuits square measure hooked up to each pin on the device. These cells, embedded among the device, will capture knowledge from pin or core logic signals conjointly as force knowledge onto pins. Captured knowledge is serially shifted out through the JTAG take a look at Access Port (TAP) and will be compared to expected values to figure out a pass or fail result. Forced take a look at knowledge is serially shifted into the boundary-scan cells.

2016 ◽  
Vol 846 ◽  
pp. 3-12 ◽  
Author(s):  
Norinsan Kamil Othman ◽  
Koh Yunn Teng ◽  
Azman Jalar ◽  
Fakhrozi Che Ani ◽  
Zamri Samsudin

Electrochemical migration (ECM) of solder joining can result in the growth of a metal deposit with dendrite structure from cathode to anode. In electronic device, this phenomenon potentially leads to the incompetence or failure of whole devices. In this paper, the ECM behaviour of printed circuit boards (PCBs) with SAC 0307, one of the low-cost lead-free solder alloys with less silver content, has been studied. The corrosion behaviour of SAC 0307 has been investigated by using sodium chloride solution in different concentrations which is between 0.01 M to 1.0 M as a medium. A Water Drop Test (WDT) was carried out and the time-to-failure of each sample has been recorded. After WDT test, the dendrite phase was identified using Variable Pressure Scanning Electron Microscope (VPSEM) with Energy Dispersive X-ray Spectroscopy (EDX) and X-ray Photoelectron Spectroscopy (XPS) to investigate its surface morphology and corrosion products. As results, it has been found that the corrosion susceptibility of SAC 0307 is greatly influenced by the concentration of the medium solution used. The voltage drop occurred was due to the dendrite grew at the cathode electrode on the PCBs and expanded to the anode electrode, indicating a significant effect of aggressive behaviour of the medium used. The rate of the dendrite growth was affected by the concentration of the medium used. The main element found in the dendrites on the SAC 0307 on PCBs was Tin as it is more mobile than Cu.


1996 ◽  
Vol 118 (2) ◽  
pp. 87-93
Author(s):  
K. X. Hu ◽  
Y. Huang ◽  
C. P. Yeh ◽  
K. W. Wyatt

The single most difficult aspect for thermo-mechanical analysis at the board level lies in to an accurate accounting for interactions among boards and small features such as solder joints and secondary components. It is the large number of small features populated in a close neighborhood that proliferates the computational intensity. This paper presents an approach to stress analysis for boards with highly populated small features (solder joints, for example). To this end, a generalized self-consistent method, utilizing an energy balance framework and a three-phase composite model, is developed to obtain the effective properties at board level. The stress distribution inside joints and components are obtained through a back substitution. The solutions presented are mostly in the closed-form and require a minimum computational effort. The results obtained by present approach are compared with those by finite element analysis. The numerical calculations show that the proposed micromechanics approach can provide reasonably accurate solutions for highly populated printed circuit boards.


2008 ◽  
Vol 16 (11) ◽  
pp. 8077 ◽  
Author(s):  
S. H. Hwang ◽  
W. J. Lee ◽  
J. W. Lim ◽  
K. Y. Jung ◽  
K. S. Cha ◽  
...  

Circuit World ◽  
2011 ◽  
Vol 37 (3) ◽  
pp. 27-34 ◽  
Author(s):  
D.K. Sharma ◽  
R.K. Sharma ◽  
B.K. Kaushik ◽  
Pankaj Kumar

Sign in / Sign up

Export Citation Format

Share Document